⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 enter_evidence.m

📁 贝叶斯网络matlab源程序,可用于分类,欢迎大家下载测试
💻 M
字号:
function [engine, loglik] = enter_evidence(engine, evidence, filter)% ENTER_EVIDENCE Add the specified evidence to the network (pearl_dbn)% [engine, loglik] = enter_evidence(engine, evidence, filter)%% evidence{i,t} = [] if if X(i,t) is hidden, and otherwise contains its observed value (scalar or column vector)% If filter = 1, we do filtering, otherwise smoothing (default).if nargin < 3, filter = 0; end[ss T] = size(evidence);bnet = bnet_from_engine(engine);bnet2 = dbn_to_bnet(bnet, T);ns = bnet2.node_sizes;hnodes = mysetdiff(1:ss, engine.onodes);hnodes = hnodes(:)';[engine.parent_index, engine.child_index] = mk_pearl_msg_indices(bnet2);msg = init_msgs(bnet2.dag, ns, evidence);msg = init_ev_msgs(engine, evidence, msg);niter = 1;for iter=1:niter  % FORWARD  for t=1:T    % update pi    for i=1:ss %hnodes      n = i + (t-1)*ss;      ps = parents(bnet2.dag, n);      if t==1	e = bnet.equiv_class(i,1);      else	e = bnet.equiv_class(i,2);      end      msg{n}.pi = compute_pi(bnet.CPD{e}, n, ps, msg);      %msg{n}.pi = normalise(msg{n}.pi(:) .* msg{n}.lambda_from_self(:));    end    % send pi msg to children    for i=1:ss % hnodes      n = i + (t-1)*ss;      cs = children(bnet2.dag, n);      for c=cs(:)'	j = engine.parent_index{c}(n); % n is c's j'th parent	msg{c}.pi_from_parent{j} = normalise(compute_pi_msg(n, cs, msg, c, ns));      end    end  end  if filter    disp('skipping smoothing');    break;  end      % BACKWARD  for t=T:-1:1    % update lambda    for i=1:ss % hnodes      n = i + (t-1)*ss;      cs = children(bnet2.dag, n);      msg{n}.lambda = compute_lambda(n, cs, msg, ns);    end    % send lambda msgs to parents    for i=1:ss % hnodes      n = i + (t-1)*ss;      ps = parents(bnet2.dag, n);      for p=ps(:)'	j = engine.child_index{p}(n); % n is p's j'th child	if t > 1	  e = bnet.equiv_class(i, 2);	else	  e = bnet.equiv_class(i, 1);	end	msg{p}.lambda_from_child{j} = normalise(compute_lambda_msg(bnet.CPD{e}, n, ps, msg, p));      end     end  end  endengine.marginal = cell(ss,T);lik = zeros(1,ss*T);for t=1:T  for i=1:ss    n = i + (t-1)*ss;    [bel, lik(n)] = normalise(msg{n}.pi .* msg{n}.lambda);         engine.marginal{i,t} = bel;  endendengine.evidence = evidence; % needed by marginal_nodes and marginal_familyengine.msg = msg;  % needed by marginal_familyloglik = sum(log(lik));%%%%%%%function lambda = compute_lambda(n, cs, msg, ns)% Pearl p183 eq 4.50lambda = prod_lambda_msgs(n, cs, msg, ns);%%%%%%%function pi_msg = compute_pi_msg(n, cs, msg, c, ns)% Pearl p183 eq 4.53 and 4.51pi_msg = msg{n}.pi .* prod_lambda_msgs(n, cs, msg, ns, c);%%%%%%%%%function lam = prod_lambda_msgs(n, cs, msg, ns, except)if nargin < 5, except = -1; endlam = msg{n}.lambda_from_self(:);%lam = ones(ns(n), 1);for i=1:length(cs)  c = cs(i);  if c ~= except    lam = lam .* msg{n}.lambda_from_child{i};  endend   

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -