📄 bp_mrf2.m
字号:
function [new_bel, niter, new_msg, edge_id, nstates] = bp_mrf2_general(adj_mat, pot, local_evidence, varargin)% BP_MRF2_GENERAL Belief propagation on an MRF with pairwise potentials% function [bel, niter] = bp_mrf2_general(adj_mat, pot, local_evidence, varargin)%% Input:% adj_mat(i,j) = 1 iff there is an edge between nodes i and j% pot(ki,kj,i,j) or pot{i,j}(ki,kj) = potential on edge between nodes i,j% If the potentials on all edges are the same,% you can just pass in 1 array, pot(ki,kj)% local_evidence(state, node) or local_evidence{i}(k) = Pr(observation at node i | Xi=k)%% Use cell arrays if the hidden nodes do not all have the same number of values.%% Output:% bel(k,i) or bel{i}(k) = P(Xi=k|evidence)% niter contains the number of iterations used %% [ ... ] = bp_mrf2(..., 'param1',val1, 'param2',val2, ...)% allows you to specify optional parameters as name/value pairs.% Parameters names are below [default value in brackets]%% max_iter - max. num. iterations [ 5*nnodes]% momentum - weight assigned to old message in convex combination% (useful for damping oscillations) - currently ignored i[0]% tol - tolerance used to assess convergence [1e-3]% maximize - 1 means use max-product, 0 means use sum-product [0]% verbose - 1 means print error at every iteration [0]%% fn - name of function to call at end of every iteration [ [] ]% fnargs - we call feval(fn, bel, iter, fnargs{:}) [ [] ]nnodes = length(adj_mat);[max_iter, momentum, tol, maximize, verbose, fn, fnargs] = ... process_options(varargin, 'max_iter', 5*nnodes, 'momentum', 0, ... 'tol', 1e-3, 'maximize', 0, 'verbose', 0, ... 'fn', [], 'fnargs', []);if iscell(local_evidence) use_cell = 1;else use_cell = 0; [nstates nnodes] = size(local_evidence);endif iscell(pot) tied_pot = 0;else tied_pot = (ndims(pot)==2);end% give each edge a unique numberndx = find(adj_mat);nedges = length(ndx);edge_id = zeros(1, nnodes*nnodes);edge_id(ndx) = 1:nedges; edge_id = reshape(edge_id, nnodes, nnodes);% initialise messagesif use_cell prod_of_msgs = cell(1, nnodes); old_bel = cell(1, nnodes); nstates = zeros(1, nnodes); old_msg = cell(1, nedges); for i=1:nnodes nstates(i) = length(local_evidence{i}); prod_of_msgs{i} = local_evidence{i}; old_bel{i} = local_evidence{i}; end for i=1:nnodes nbrs = find(adj_mat(:,i)); for j=nbrs(:)' old_msg{edge_id(i,j)} = normalise(ones(nstates(j),1)); end endelse prod_of_msgs = local_evidence; old_bel = local_evidence; %old_msg = zeros(nstates, nnodes, nnodes); old_msg = zeros(nstates, nedges); m = normalise(ones(nstates,1)); for i=1:nnodes nbrs = find(adj_mat(:,i)); for j=nbrs(:)' old_msg(:, edge_id(i,j)) = m; %old_msg(:,i,j) = m; end endendconverged = 0;iter = 1;while ~converged & (iter <= max_iter) % each node sends a msg to each of its neighbors for i=1:nnodes nbrs = find(adj_mat(i,:)); for j=nbrs(:)' if tied_pot pot_ij = pot; else if iscell(pot) pot_ij = pot{i,j}; else pot_ij = pot(:,:,i,j); end end pot_ij = pot_ij'; % now pot_ij(xj, xi) % so pot_ij * msg(xi) = sum_xi pot(xj,xi) msg(xi) = f(xj) if 1 % Compute temp = product of all incoming msgs except from j % by dividing out old msg from j from the product of all msgs sent to i if use_cell temp = prod_of_msgs{i}; m = old_msg{edge_id(j,i)}; else temp = prod_of_msgs(:,i); m = old_msg(:, edge_id(j,i)); end if any(m==0) fprintf('iter=%d, send from i=%d to j=%d\n', iter, i, j); keyboard end m = m + (m==0); % valid since m(k)=0 => temp(k)=0, so can replace 0's with anything temp = temp ./ m; temp_div = temp; end if 1 % Compute temp = product of all incoming msgs except from j in obvious way if use_cell %temp = ones(nstates(i),1); temp = local_evidence{i}; for k=nbrs(:)' if k==j, continue, end; temp = temp .* old_msg{edge_id(k,i)}; end else %temp = ones(nstates,1); temp = local_evidence(:,i); for k=nbrs(:)' if k==j, continue, end; temp = temp .* old_msg(:, edge_id(k,i)); end end end %assert(approxeq(temp, temp_div)) assert(approxeq(normalise(pot_ij * temp), normalise(pot_ij * temp_div))) if maximize newm = max_mult(pot_ij, temp); % bottleneck else newm = pot_ij * temp; end newm = normalise(newm); if use_cell new_msg{edge_id(i,j)} = newm; else new_msg(:, edge_id(i,j)) = newm; end end % for j end % for i old_prod_of_msgs = prod_of_msgs; % each node multiplies all its incoming msgs and computes its local belief if use_cell for i=1:nnodes nbrs = find(adj_mat(:,i)); prod_of_msgs{i} = local_evidence{i}; for j=nbrs(:)' prod_of_msgs{i} = prod_of_msgs{i} .* new_msg{edge_id(j,i)}; end new_bel{i} = normalise(prod_of_msgs{i}); end err = abs(cat(1,new_bel{:}) - cat(1, old_bel{:})); else for i=1:nnodes nbrs = find(adj_mat(:,i)); prod_of_msgs(:,i) = local_evidence(:,i); for j=nbrs(:)' prod_of_msgs(:,i) = prod_of_msgs(:,i) .* new_msg(:,edge_id(j,i)); end new_bel(:,i) = normalise(prod_of_msgs(:,i)); end err = abs(new_bel(:) - old_bel(:)); end converged = all(err < tol); if verbose, fprintf('error at iter %d = %f\n', iter, sum(err)); end if ~isempty(fn) if isempty(fnargs) feval(fn, new_bel); else feval(fn, new_bel, iter, fnargs{:}); end end iter = iter + 1; old_msg = new_msg; old_bel = new_bel;end % whileniter = iter-1;fprintf('converged in %d iterations\n', niter);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -