📄 math.c
字号:
0x4A4B8DL, 0x4A217EL, 0x49F77AL, 0x49CD81L, 0x49A393L, 0x4979AFL, 0x494FD5L, 0x492605L, 0x48FC3FL, 0x48D282L, 0x48A8CFL, 0x487F25L, 0x485584L, 0x482BECL, 0x48025DL, 0x47D8D6L, 0x47AF57L, 0x4785E0L, 0x475C72L, 0x47330AL, 0x4709ABL, 0x46E052L, 0x46B701L, 0x468DB7L, 0x466474L, 0x463B37L, 0x461201L, 0x45E8D0L, 0x45BFA6L, 0x459682L, 0x456D64L, 0x45444BL, 0x451B37L, 0x44F229L, 0x44C920L, 0x44A01CL, 0x44771CL, 0x444E21L, 0x44252AL, 0x43FC38L, 0x43D349L, 0x43AA5FL, 0x438178L, 0x435894L, 0x432FB4L, 0x4306D8L, 0x42DDFEL, 0x42B527L, 0x428C53L, 0x426381L, 0x423AB2L, 0x4211E5L, 0x41E91AL, 0x41C051L, 0x41978AL, 0x416EC5L, 0x414601L, 0x411D3EL, 0x40F47CL, 0x40CBBBL, 0x40A2FBL, 0x407A3CL, 0x40517DL, 0x4028BEL, 0x400000L, 0x3FD742L, 0x3FAE83L, 0x3F85C4L, 0x3F5D05L, 0x3F3445L, 0x3F0B84L, 0x3EE2C2L, 0x3EB9FFL, 0x3E913BL, 0x3E6876L, 0x3E3FAFL, 0x3E16E6L, 0x3DEE1BL, 0x3DC54EL, 0x3D9C7FL, 0x3D73ADL, 0x3D4AD9L, 0x3D2202L, 0x3CF928L, 0x3CD04CL, 0x3CA76CL, 0x3C7E88L, 0x3C55A1L, 0x3C2CB7L, 0x3C03C8L, 0x3BDAD6L, 0x3BB1DFL, 0x3B88E4L, 0x3B5FE4L, 0x3B36E0L, 0x3B0DD7L, 0x3AE4C9L, 0x3ABBB5L, 0x3A929CL, 0x3A697EL, 0x3A405AL, 0x3A1730L, 0x39EDFFL, 0x39C4C9L, 0x399B8CL, 0x397249L, 0x3948FFL, 0x391FAEL, 0x38F655L, 0x38CCF6L, 0x38A38EL, 0x387A20L, 0x3850A9L, 0x38272AL, 0x37FDA3L, 0x37D414L, 0x37AA7CL, 0x3780DBL, 0x375731L, 0x372D7EL, 0x3703C1L, 0x36D9FBL, 0x36B02BL, 0x368651L, 0x365C6DL, 0x36327FL, 0x360886L, 0x35DE82L, 0x35B473L, 0x358A59L, 0x356033L, 0x353602L, 0x350BC5L, 0x34E17CL, 0x34B727L, 0x348CC5L, 0x346256L, 0x3437DAL, 0x340D52L, 0x33E2BBL, 0x33B817L, 0x338D66L, 0x3362A6L, 0x3337D7L, 0x330CFBL, 0x32E20FL, 0x32B714L, 0x328C0AL, 0x3260F0L, 0x3235C6L, 0x320A8CL, 0x31DF42L, 0x31B3E7L, 0x31887CL, 0x315CFFL, 0x313170L, 0x3105D0L, 0x30DA1EL, 0x30AE5AL, 0x308283L, 0x305699L, 0x302A9CL, 0x2FFE8BL, 0x2FD267L, 0x2FA62EL, 0x2F79E1L, 0x2F4D80L, 0x2F2109L, 0x2EF47DL, 0x2EC7DBL, 0x2E9B24L, 0x2E6E56L, 0x2E4171L, 0x2E1475L, 0x2DE762L, 0x2DBA37L, 0x2D8CF4L, 0x2D5F98L, 0x2D3223L, 0x2D0495L, 0x2CD6EEL, 0x2CA92CL, 0x2C7B50L, 0x2C4D59L, 0x2C1F47L, 0x2BF119L, 0x2BC2CFL, 0x2B9468L, 0x2B65E5L, 0x2B3744L, 0x2B0885L, 0x2AD9A7L, 0x2AAAABL, 0x2A7B8FL, 0x2A4C53L, 0x2A1CF7L, 0x29ED7BL, 0x29BDDCL, 0x298E1CL, 0x295E3AL, 0x292E34L, 0x28FE0BL, 0x28CDBDL, 0x289D4BL, 0x286CB3L, 0x283BF6L, 0x280B12L, 0x27DA06L, 0x27A8D3L, 0x277777L, 0x2745F2L, 0x271443L, 0x26E26AL, 0x26B065L, 0x267E34L, 0x264BD6L, 0x26194AL, 0x25E690L, 0x25B3A7L, 0x25808EL, 0x254D44L, 0x2519C8L, 0x24E619L, 0x24B236L, 0x247E1FL, 0x2449D3L, 0x241550L, 0x23E095L, 0x23ABA2L, 0x237675L, 0x23410EL, 0x230B6AL, 0x22D58AL, 0x229F6BL, 0x22690DL, 0x22326EL, 0x21FB8DL, 0x21C468L, 0x218CFFL, 0x215550L, 0x211D59L, 0x20E519L, 0x20AC8EL, 0x2073B7L, 0x203A92L, 0x20011DL, 0x1FC757L, 0x1F8D3DL, 0x1F52CFL, 0x1F1809L, 0x1EDCEAL, 0x1EA170L, 0x1E6598L, 0x1E2961L, 0x1DECC7L, 0x1DAFC9L, 0x1D7264L, 0x1D3496L, 0x1CF65BL, 0x1CB7B1L, 0x1C7895L, 0x1C3904L, 0x1BF8FAL, 0x1BB874L, 0x1B7770L, 0x1B35E8L, 0x1AF3DAL, 0x1AB141L, 0x1A6E19L, 0x1A2A5EL, 0x19E60BL, 0x19A11BL, 0x195B8AL, 0x191551L, 0x18CE6CL, 0x1886D4L, 0x183E83L, 0x17F573L, 0x17AB9BL, 0x1760F6L, 0x17157BL, 0x16C921L, 0x167BE0L, 0x162DAFL, 0x15DE82L, 0x158E4FL, 0x153D0BL, 0x14EAA8L, 0x14971AL, 0x144251L, 0x13EC3FL, 0x1394D1L, 0x133BF5L, 0x12E198L, 0x1285A2L, 0x1227FBL, 0x11C889L, 0x11672FL, 0x1103CAL, 0x109E37L, 0x10364BL, 0xFCBDAL, 0xF5EAEL, 0xEEE8CL, 0xE7B2DL, 0xE0444L, 0xD8971L, 0xD0A46L, 0xC863FL, 0xBFCBBL, 0xB6CF4L, 0xAD5F0L, 0xA366FL, 0x98CC6L, 0x8D6ADL, 0x810DBL, 0x73642L, 0x63E62L, 0x518A6L, 0x39A39L, 0x0L};/* fatan: * Fixed point inverse tangent. Does a binary search on the tan table. */fixed fatan(fixed x){ int a, b, c; /* for binary search */ fixed d; /* difference value for search */ if (x >= 0) { /* search the first part of tan table */ a = 0; b = 127; } else { /* search the second half instead */ a = 128; b = 255; } do { c = (a + b) >> 1; d = x - _tan_tbl[c]; if (d > 0) a = c + 1; else if (d < 0) b = c - 1; } while ((a <= b) && (d)); if (x >= 0) return ((long)c) << 15; return (-0x00800000L + (((long)c) << 15));}/* fatan2: * Like the libc atan2, but for fixed point numbers. */fixed fatan2(fixed y, fixed x){ fixed r; if (x==0) { if (y==0) { errno = EDOM; return 0L; } else return ((y < 0) ? -0x00400000L : 0x00400000L); } errno = 0; r = fdiv(y, x); if (errno) { errno = 0; return ((y < 0) ? -0x00400000L : 0x00400000L); } r = fatan(r); if (x >= 0) return r; if (y >= 0) return 0x00800000L + r; return r - 0x00800000L;}#if 0defined(__GNUC__) && defined(i386) && defined(_USE_ASM)unsigned short _sqrt_tabl[256] ={ /* this table is used by the fsqrt() and fhypot() routines in math.s */ 0x2D4, 0x103F, 0x16CD, 0x1BDB, 0x201F, 0x23E3, 0x274B, 0x2A6D, 0x2D57, 0x3015, 0x32AC, 0x3524, 0x377F, 0x39C2, 0x3BEE, 0x3E08, 0x400F, 0x4207, 0x43F0, 0x45CC, 0x479C, 0x4960, 0x4B19, 0x4CC9, 0x4E6F, 0x500C, 0x51A2, 0x532F, 0x54B6, 0x5635, 0x57AE, 0x5921, 0x5A8D, 0x5BF4, 0x5D56, 0x5EB3, 0x600A, 0x615D, 0x62AB, 0x63F5, 0x653B, 0x667D, 0x67BA, 0x68F5, 0x6A2B, 0x6B5E, 0x6C8D, 0x6DBA, 0x6EE3, 0x7009, 0x712C, 0x724C, 0x7369, 0x7484, 0x759C, 0x76B1, 0x77C4, 0x78D4, 0x79E2, 0x7AEE, 0x7BF7, 0x7CFE, 0x7E04, 0x7F07, 0x8007, 0x8106, 0x8203, 0x82FF, 0x83F8, 0x84EF, 0x85E5, 0x86D9, 0x87CB, 0x88BB, 0x89AA, 0x8A97, 0x8B83, 0x8C6D, 0x8D56, 0x8E3D, 0x8F22, 0x9007, 0x90E9, 0x91CB, 0x92AB, 0x938A, 0x9467, 0x9543, 0x961E, 0x96F8, 0x97D0, 0x98A8, 0x997E, 0x9A53, 0x9B26, 0x9BF9, 0x9CCA, 0x9D9B, 0x9E6A, 0x9F39, 0xA006, 0xA0D2, 0xA19D, 0xA268, 0xA331, 0xA3F9, 0xA4C1, 0xA587, 0xA64D, 0xA711, 0xA7D5, 0xA898, 0xA95A, 0xAA1B, 0xAADB, 0xAB9A, 0xAC59, 0xAD16, 0xADD3, 0xAE8F, 0xAF4B, 0xB005, 0xB0BF, 0xB178, 0xB230, 0xB2E8, 0xB39F, 0xB455, 0xB50A, 0xB5BF, 0xB673, 0xB726, 0xB7D9, 0xB88A, 0xB93C, 0xB9EC, 0xBA9C, 0xBB4B, 0xBBFA, 0xBCA8, 0xBD55, 0xBE02, 0xBEAE, 0xBF5A, 0xC005, 0xC0AF, 0xC159, 0xC202, 0xC2AB, 0xC353, 0xC3FA, 0xC4A1, 0xC548, 0xC5ED, 0xC693, 0xC737, 0xC7DC, 0xC87F, 0xC923, 0xC9C5, 0xCA67, 0xCB09, 0xCBAA, 0xCC4B, 0xCCEB, 0xCD8B, 0xCE2A, 0xCEC8, 0xCF67, 0xD004, 0xD0A2, 0xD13F, 0xD1DB, 0xD277, 0xD312, 0xD3AD, 0xD448, 0xD4E2, 0xD57C, 0xD615, 0xD6AE, 0xD746, 0xD7DE, 0xD876, 0xD90D, 0xD9A4, 0xDA3A, 0xDAD0, 0xDB66, 0xDBFB, 0xDC90, 0xDD24, 0xDDB8, 0xDE4C, 0xDEDF, 0xDF72, 0xE004, 0xE096, 0xE128, 0xE1B9, 0xE24A, 0xE2DB, 0xE36B, 0xE3FB, 0xE48B, 0xE51A, 0xE5A9, 0xE637, 0xE6C5, 0xE753, 0xE7E1, 0xE86E, 0xE8FB, 0xE987, 0xEA13, 0xEA9F, 0xEB2B, 0xEBB6, 0xEC41, 0xECCB, 0xED55, 0xEDDF, 0xEE69, 0xEEF2, 0xEF7B, 0xF004, 0xF08C, 0xF114, 0xF19C, 0xF223, 0xF2AB, 0xF332, 0xF3B8, 0xF43E, 0xF4C4, 0xF54A, 0xF5D0, 0xF655, 0xF6DA, 0xF75E, 0xF7E3, 0xF867, 0xF8EA, 0xF96E, 0xF9F1, 0xFA74, 0xFAF7, 0xFB79, 0xFBFB, 0xFC7D, 0xFCFF, 0xFD80, 0xFE02, 0xFE82, 0xFF03, 0xFF83};#else/* use straight C versions *//* fsqrt: * Fixed point square root routine for non-i386. */fixed fsqrt(fixed x){ if (x > 0) return ftofix(sqrt(fixtof(x))); if (x < 0) errno = EDOM; return 0;}/* fhypot: * Fixed point sqrt (x*x+y*y) for non-i386. */fixed fhypot(fixed x, fixed y){ return ftofix(hypot(fixtof(x), fixtof(y)));}#endif /* i386 vs. portable C implementations */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -