📄 des.c
字号:
if ((obit=inv_comp_perm[inbit]) == 255) continue; if (obit >= 24) *ir |= bits24[obit - 24]; } } } }}static voidsetup_psbox(void){ int i, j, b; my_u_int32_t *p; for (b = 0; b < 4; b++) for (i = 0; i < 256; i++) { *(p = &common[b][i]) = 0L; for (j = 0; j < 8; j++) { if (i & bits8[j]) *p |= bits32[un_pbox[8 * b + j]]; } }}#endifstatic voidsetup_salt(my_u_int32_t salt){ my_u_int32_t obit, saltbit; int i; if (salt == old_salt) return; old_salt = salt; saltbits = 0L; saltbit = 1; obit = 0x800000; for (i = 0; i < 24; i++) { if (salt & saltbit) saltbits |= obit; saltbit <<= 1; obit >>= 1; }}static my_u_int32_t char_to_int(const char *key){ my_u_int32_t byte0,byte1,byte2,byte3; byte0 = (my_u_int32_t) (my_u_char_t) key[0]; byte1 = (my_u_int32_t) (my_u_char_t) key[1]; byte2 = (my_u_int32_t) (my_u_char_t) key[2]; byte3 = (my_u_int32_t) (my_u_char_t) key[3]; return byte0 << 24 | byte1 << 16 | byte2 << 8 | byte3 ;}static intdes_setkey(const char *key){ my_u_int32_t k0, k1, rawkey0, rawkey1; int shifts, round; des_init(); /* rawkey0 = ntohl(*(const my_u_int32_t *) key); * rawkey1 = ntohl(*(const my_u_int32_t *) (key + 4)); */ rawkey0 = char_to_int(key); rawkey1 = char_to_int(key+4); if ((rawkey0 | rawkey1) && rawkey0 == old_rawkey0 && rawkey1 == old_rawkey1) { /* * Already setup for this key. * This optimisation fails on a zero key (which is weak and * has bad parity anyway) in order to simplify the starting * conditions. */ return(0); } old_rawkey0 = rawkey0; old_rawkey1 = rawkey1; /* * Do key permutation and split into two 28-bit subkeys. */#ifdef LOWSPACE setup_key_perm_maskl(); k0 = common[0][rawkey0 >> 25] | common[1][(rawkey0 >> 17) & 0x7f] | common[2][(rawkey0 >> 9) & 0x7f] | common[3][(rawkey0 >> 1) & 0x7f] | common[4][rawkey1 >> 25] | common[5][(rawkey1 >> 17) & 0x7f] | common[6][(rawkey1 >> 9) & 0x7f] | common[7][(rawkey1 >> 1) & 0x7f]; setup_key_perm_maskr(); k1 = common[0][rawkey0 >> 25] | common[1][(rawkey0 >> 17) & 0x7f] | common[2][(rawkey0 >> 9) & 0x7f] | common[3][(rawkey0 >> 1) & 0x7f] | common[4][rawkey1 >> 25] | common[5][(rawkey1 >> 17) & 0x7f] | common[6][(rawkey1 >> 9) & 0x7f] | common[7][(rawkey1 >> 1) & 0x7f];#else k0 = key_perm_maskl[0][rawkey0 >> 25] | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] | key_perm_maskl[4][rawkey1 >> 25] | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; k1 = key_perm_maskr[0][rawkey0 >> 25] | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] | key_perm_maskr[4][rawkey1 >> 25] | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];#endif /* * Rotate subkeys and do compression permutation. */ shifts = 0; for (round = 0; round < 16; round++) { my_u_int32_t t0, t1; shifts += key_shifts[round]; t0 = (k0 << shifts) | (k0 >> (28 - shifts)); t1 = (k1 << shifts) | (k1 >> (28 - shifts));#ifdef LOWSPACE setup_comp_maskl(); de_keysl[15 - round] = en_keysl[round] = common[0][(t0 >> 21) & 0x7f] | common[1][(t0 >> 14) & 0x7f] | common[2][(t0 >> 7) & 0x7f] | common[3][t0 & 0x7f] | common[4][(t1 >> 21) & 0x7f] | common[5][(t1 >> 14) & 0x7f] | common[6][(t1 >> 7) & 0x7f] | common[7][t1 & 0x7f]; setup_comp_maskr(); de_keysr[15 - round] = en_keysr[round] = common[0][(t0 >> 21) & 0x7f] | common[1][(t0 >> 14) & 0x7f] | common[2][(t0 >> 7) & 0x7f] | common[3][t0 & 0x7f] | common[4][(t1 >> 21) & 0x7f] | common[5][(t1 >> 14) & 0x7f] | common[6][(t1 >> 7) & 0x7f] | common[7][t1 & 0x7f];#else de_keysl[15 - round] = en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] | comp_maskl[1][(t0 >> 14) & 0x7f] | comp_maskl[2][(t0 >> 7) & 0x7f] | comp_maskl[3][t0 & 0x7f] | comp_maskl[4][(t1 >> 21) & 0x7f] | comp_maskl[5][(t1 >> 14) & 0x7f] | comp_maskl[6][(t1 >> 7) & 0x7f] | comp_maskl[7][t1 & 0x7f]; de_keysr[15 - round] = en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] | comp_maskr[1][(t0 >> 14) & 0x7f] | comp_maskr[2][(t0 >> 7) & 0x7f] | comp_maskr[3][t0 & 0x7f] | comp_maskr[4][(t1 >> 21) & 0x7f] | comp_maskr[5][(t1 >> 14) & 0x7f] | comp_maskr[6][(t1 >> 7) & 0x7f] | comp_maskr[7][t1 & 0x7f];#endif } return(0);}static intdo_des( my_u_int32_t l_in, my_u_int32_t r_in, my_u_int32_t *l_out, my_u_int32_t *r_out, int count){ /* * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. */ my_u_int32_t l, r, *kl, *kr, *kl1, *kr1; my_u_int32_t f, r48l, r48r; int round; if (count == 0) { return(1); } else if (count > 0) { /* * Encrypting */ kl1 = en_keysl; kr1 = en_keysr; } else { /* * Decrypting */ count = -count; kl1 = de_keysl; kr1 = de_keysr; } /* * Do initial permutation (IP). */ #ifdef LOWSPACE setup_ip_maskl(); l = common[0][l_in >> 24] | common[1][(l_in >> 16) & 0xff] | common[2][(l_in >> 8) & 0xff] | common[3][l_in & 0xff] | common[4][r_in >> 24] | common[5][(r_in >> 16) & 0xff] | common[6][(r_in >> 8) & 0xff] | common[7][r_in & 0xff]; setup_ip_maskr(); r = common[0][l_in >> 24] | common[1][(l_in >> 16) & 0xff] | common[2][(l_in >> 8) & 0xff] | common[3][l_in & 0xff] | common[4][r_in >> 24] | common[5][(r_in >> 16) & 0xff] | common[6][(r_in >> 8) & 0xff] | common[7][r_in & 0xff];#else l = ip_maskl[0][l_in >> 24] | ip_maskl[1][(l_in >> 16) & 0xff] | ip_maskl[2][(l_in >> 8) & 0xff] | ip_maskl[3][l_in & 0xff] | ip_maskl[4][r_in >> 24] | ip_maskl[5][(r_in >> 16) & 0xff] | ip_maskl[6][(r_in >> 8) & 0xff] | ip_maskl[7][r_in & 0xff]; r = ip_maskr[0][l_in >> 24] | ip_maskr[1][(l_in >> 16) & 0xff] | ip_maskr[2][(l_in >> 8) & 0xff] | ip_maskr[3][l_in & 0xff] | ip_maskr[4][r_in >> 24] | ip_maskr[5][(r_in >> 16) & 0xff] | ip_maskr[6][(r_in >> 8) & 0xff] | ip_maskr[7][r_in & 0xff];#endif while (count--) { /* * Do each round. */ kl = kl1; kr = kr1; round = 16; while (round--) { /* * Expand R to 48 bits (simulate the E-box). */ r48l = ((r & 0x00000001) << 23) | ((r & 0xf8000000) >> 9) | ((r & 0x1f800000) >> 11) | ((r & 0x01f80000) >> 13) | ((r & 0x001f8000) >> 15); r48r = ((r & 0x0001f800) << 7) | ((r & 0x00001f80) << 5) | ((r & 0x000001f8) << 3) | ((r & 0x0000001f) << 1) | ((r & 0x80000000) >> 31); /* * Do salting for crypt() and friends, and * XOR with the permuted key. */ f = (r48l ^ r48r) & saltbits; r48l ^= f ^ *kl++; r48r ^= f ^ *kr++; /* * Do sbox lookups (which shrink it back to 32 bits) * and do the pbox permutation at the same time. */#ifdef LOWSPACE setup_psbox(); f = common[0][m_sbox[0][r48l >> 12]] | common[1][m_sbox[1][r48l & 0xfff]] | common[2][m_sbox[2][r48r >> 12]] | common[3][m_sbox[3][r48r & 0xfff]];#else f = psbox[0][m_sbox[0][r48l >> 12]] | psbox[1][m_sbox[1][r48l & 0xfff]] | psbox[2][m_sbox[2][r48r >> 12]] | psbox[3][m_sbox[3][r48r & 0xfff]];#endif /* * Now that we've permuted things, complete f(). */ f ^= l; l = r; r = f; } r = l; l = f; } /* * Do final permutation (inverse of IP). */#ifdef LOWSPACE setup_fp_maskl(); *l_out = common[0][l >> 24] | common[1][(l >> 16) & 0xff] | common[2][(l >> 8) & 0xff] | common[3][l & 0xff] | common[4][r >> 24] | common[5][(r >> 16) & 0xff] | common[6][(r >> 8) & 0xff] | common[7][r & 0xff]; setup_fp_maskr(); *r_out = common[0][l >> 24] | common[1][(l >> 16) & 0xff] | common[2][(l >> 8) & 0xff] | common[3][l & 0xff] | common[4][r >> 24] | common[5][(r >> 16) & 0xff] | common[6][(r >> 8) & 0xff] | common[7][r & 0xff];#else *l_out = fp_maskl[0][l >> 24] | fp_maskl[1][(l >> 16) & 0xff] | fp_maskl[2][(l >> 8) & 0xff] | fp_maskl[3][l & 0xff] | fp_maskl[4][r >> 24] | fp_maskl[5][(r >> 16) & 0xff] | fp_maskl[6][(r >> 8) & 0xff] | fp_maskl[7][r & 0xff]; *r_out = fp_maskr[0][l >> 24] | fp_maskr[1][(l >> 16) & 0xff] | fp_maskr[2][(l >> 8) & 0xff] | fp_maskr[3][l & 0xff] | fp_maskr[4][r >> 24] | fp_maskr[5][(r >> 16) & 0xff] | fp_maskr[6][(r >> 8) & 0xff] | fp_maskr[7][r & 0xff];#endif return(0);}#if 0static intdes_cipher(const char *in, char *out, my_u_int32_t salt, int count){ my_u_int32_t l_out, r_out, rawl, rawr; int retval; union { my_u_int32_t *ui32; const char *c; } trans; des_init(); setup_salt(salt); trans.c = in; rawl = ntohl(*trans.ui32++); rawr = ntohl(*trans.ui32); retval = do_des(rawl, rawr, &l_out, &r_out, count); trans.c = out; *trans.ui32++ = htonl(l_out); *trans.ui32 = htonl(r_out); return(retval);}#endifvoidsetkey(const char *key){ int i, j; my_u_int32_t packed_keys[2]; my_u_char_t *p; p = (my_u_char_t *) packed_keys; for (i = 0; i < 8; i++) { p[i] = 0; for (j = 0; j < 8; j++) if (*key++ & 1) p[i] |= bits8[j]; } des_setkey(p);}voidencrypt(char *block, int flag){ my_u_int32_t io[2]; my_u_char_t *p; int i, j; des_init(); setup_salt(0L); p = block; for (i = 0; i < 2; i++) { io[i] = 0L; for (j = 0; j < 32; j++) if (*p++ & 1) io[i] |= bits32[j]; } do_des(io[0], io[1], io, io + 1, flag ? -1 : 1); for (i = 0; i < 2; i++) for (j = 0; j < 32; j++) block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0;}char *crypt(const char *key, const char *setting){ my_u_int32_t count, salt, l, r0, r1, keybuf[2]; my_u_char_t *p, *q; static char output[21]; des_init(); /* * Copy the key, shifting each character up by one bit * and padding with zeros. */ q = (my_u_char_t *)keybuf; while (q - (my_u_char_t *)keybuf - 8) { *q++ = *key << 1; if (*(q - 1)) key++; } if (des_setkey((char *)keybuf)) return(NULL);#if 0 if (*setting == _PASSWORD_EFMT1) { int i; /* * "new"-style: * setting - underscore, 4 bytes of count, 4 bytes of salt * key - unlimited characters */ for (i = 1, count = 0L; i < 5; i++) count |= ascii_to_bin(setting[i]) << ((i - 1) * 6); for (i = 5, salt = 0L; i < 9; i++) salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6); while (*key) { /* * Encrypt the key with itself. */ if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1)) return(NULL); /* * And XOR with the next 8 characters of the key. */ q = (my_u_char_t *)keybuf; while (q - (my_u_char_t *)keybuf - 8 && *key) *q++ ^= *key++ << 1; if (des_setkey((char *)keybuf)) return(NULL); } strncpy(output, setting, 9); /* * Double check that we weren't given a short setting. * If we were, the above code will probably have created * wierd values for count and salt, but we don't really care. * Just make sure the output string doesn't have an extra * NUL in it. */ output[9] = '\0'; p = (my_u_char_t *)output + strlen(output); } else #endif { /* * "old"-style: * setting - 2 bytes of salt * key - up to 8 characters */ count = 25; salt = (ascii_to_bin(setting[1]) << 6) | ascii_to_bin(setting[0]); output[0] = setting[0]; /* * If the encrypted password that the salt was extracted from * is only 1 character long, the salt will be corrupted. We * need to ensure that the output string doesn't have an extra * NUL in it! */ output[1] = setting[1] ? setting[1] : output[0]; p = (my_u_char_t *)output + 2; } setup_salt(salt); /* * Do it. */ if (do_des(0L, 0L, &r0, &r1, (int)count)) return(NULL); /* * Now encode the result... */ l = (r0 >> 8); *p++ = ascii64[(l >> 18) & 0x3f]; *p++ = ascii64[(l >> 12) & 0x3f]; *p++ = ascii64[(l >> 6) & 0x3f]; *p++ = ascii64[l & 0x3f]; l = (r0 << 16) | ((r1 >> 16) & 0xffff); *p++ = ascii64[(l >> 18) & 0x3f]; *p++ = ascii64[(l >> 12) & 0x3f]; *p++ = ascii64[(l >> 6) & 0x3f]; *p++ = ascii64[l & 0x3f]; l = r1 << 2; *p++ = ascii64[(l >> 12) & 0x3f]; *p++ = ascii64[(l >> 6) & 0x3f]; *p++ = ascii64[l & 0x3f]; *p = 0; return(output);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -