⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 des.c

📁 linux内核
💻 C
📖 第 1 页 / 共 2 页
字号:
	  if ((obit=inv_comp_perm[inbit]) == 255)	    continue;	  if (obit >= 24)	    *ir |= bits24[obit - 24];	}      }    }  }}static voidsetup_psbox(void){  int    	i, j, b;  my_u_int32_t	*p;    for (b = 0; b < 4; b++)    for (i = 0; i < 256; i++) {      *(p = &common[b][i]) = 0L;      for (j = 0; j < 8; j++) {	if (i & bits8[j])	  *p |= bits32[un_pbox[8 * b + j]];      }    }}#endifstatic voidsetup_salt(my_u_int32_t salt){	my_u_int32_t	obit, saltbit;	int	i;	if (salt == old_salt)		return;	old_salt = salt;	saltbits = 0L;	saltbit = 1;	obit = 0x800000;	for (i = 0; i < 24; i++) {		if (salt & saltbit)			saltbits |= obit;		saltbit <<= 1;		obit >>= 1;	}}static my_u_int32_t char_to_int(const char *key){  my_u_int32_t byte0,byte1,byte2,byte3;  byte0 = (my_u_int32_t) (my_u_char_t) key[0];  byte1 = (my_u_int32_t) (my_u_char_t) key[1];  byte2 = (my_u_int32_t) (my_u_char_t) key[2];  byte3 = (my_u_int32_t) (my_u_char_t) key[3];  return byte0 << 24 |  byte1 << 16 | byte2 << 8 | byte3 ;}static intdes_setkey(const char *key){	my_u_int32_t	k0, k1, rawkey0, rawkey1;	int		shifts, round;	des_init();	/*  rawkey0 = ntohl(*(const my_u_int32_t *) key);	 *  rawkey1 = ntohl(*(const my_u_int32_t *) (key + 4));	 */	rawkey0 = char_to_int(key);	rawkey1 = char_to_int(key+4);	if ((rawkey0 | rawkey1)	    && rawkey0 == old_rawkey0	    && rawkey1 == old_rawkey1) {		/*		 * Already setup for this key.		 * This optimisation fails on a zero key (which is weak and		 * has bad parity anyway) in order to simplify the starting		 * conditions.		 */		return(0);	}	old_rawkey0 = rawkey0;	old_rawkey1 = rawkey1;	/*	 *	Do key permutation and split into two 28-bit subkeys.	 */#ifdef LOWSPACE		setup_key_perm_maskl();	k0 = common[0][rawkey0 >> 25]	   | common[1][(rawkey0 >> 17) & 0x7f]	   | common[2][(rawkey0 >> 9) & 0x7f]	   | common[3][(rawkey0 >> 1) & 0x7f]	   | common[4][rawkey1 >> 25]	   | common[5][(rawkey1 >> 17) & 0x7f]	   | common[6][(rawkey1 >> 9) & 0x7f]	   | common[7][(rawkey1 >> 1) & 0x7f];	setup_key_perm_maskr();	k1 = common[0][rawkey0 >> 25]	   | common[1][(rawkey0 >> 17) & 0x7f]	   | common[2][(rawkey0 >> 9) & 0x7f]	   | common[3][(rawkey0 >> 1) & 0x7f]	   | common[4][rawkey1 >> 25]	   | common[5][(rawkey1 >> 17) & 0x7f]	   | common[6][(rawkey1 >> 9) & 0x7f]	   | common[7][(rawkey1 >> 1) & 0x7f];#else	k0 = key_perm_maskl[0][rawkey0 >> 25]	   | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]	   | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]	   | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]	   | key_perm_maskl[4][rawkey1 >> 25]	   | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]	   | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]	   | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];	k1 = key_perm_maskr[0][rawkey0 >> 25]	   | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]	   | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]	   | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]	   | key_perm_maskr[4][rawkey1 >> 25]	   | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]	   | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]	   | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];#endif	/*	 *	Rotate subkeys and do compression permutation.	 */	shifts = 0;	for (round = 0; round < 16; round++) {		my_u_int32_t	t0, t1;		shifts += key_shifts[round];		t0 = (k0 << shifts) | (k0 >> (28 - shifts));		t1 = (k1 << shifts) | (k1 >> (28 - shifts));#ifdef LOWSPACE			setup_comp_maskl();		de_keysl[15 - round] =		en_keysl[round] = common[0][(t0 >> 21) & 0x7f]				| common[1][(t0 >> 14) & 0x7f]				| common[2][(t0 >> 7) & 0x7f]				| common[3][t0 & 0x7f]				| common[4][(t1 >> 21) & 0x7f]				| common[5][(t1 >> 14) & 0x7f]				| common[6][(t1 >> 7) & 0x7f]				| common[7][t1 & 0x7f];		setup_comp_maskr();		de_keysr[15 - round] =		en_keysr[round] = common[0][(t0 >> 21) & 0x7f]				| common[1][(t0 >> 14) & 0x7f]				| common[2][(t0 >> 7) & 0x7f]				| common[3][t0 & 0x7f]				| common[4][(t1 >> 21) & 0x7f]				| common[5][(t1 >> 14) & 0x7f]				| common[6][(t1 >> 7) & 0x7f]				| common[7][t1 & 0x7f];#else		de_keysl[15 - round] =		en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]				| comp_maskl[1][(t0 >> 14) & 0x7f]				| comp_maskl[2][(t0 >> 7) & 0x7f]				| comp_maskl[3][t0 & 0x7f]				| comp_maskl[4][(t1 >> 21) & 0x7f]				| comp_maskl[5][(t1 >> 14) & 0x7f]				| comp_maskl[6][(t1 >> 7) & 0x7f]				| comp_maskl[7][t1 & 0x7f];		de_keysr[15 - round] =		en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]				| comp_maskr[1][(t0 >> 14) & 0x7f]				| comp_maskr[2][(t0 >> 7) & 0x7f]				| comp_maskr[3][t0 & 0x7f]				| comp_maskr[4][(t1 >> 21) & 0x7f]				| comp_maskr[5][(t1 >> 14) & 0x7f]				| comp_maskr[6][(t1 >> 7) & 0x7f]				| comp_maskr[7][t1 & 0x7f];#endif	}	return(0);}static intdo_des(	my_u_int32_t l_in, my_u_int32_t r_in, my_u_int32_t *l_out, my_u_int32_t *r_out, int count){	/*	 *	l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.	 */	my_u_int32_t	l, r, *kl, *kr, *kl1, *kr1;	my_u_int32_t	f, r48l, r48r;	int		round;	if (count == 0) {		return(1);	} else if (count > 0) {		/*		 * Encrypting		 */		kl1 = en_keysl;		kr1 = en_keysr;	} else {		/*		 * Decrypting		 */		count = -count;		kl1 = de_keysl;		kr1 = de_keysr;	}	/*	 *	Do initial permutation (IP).	 */	#ifdef LOWSPACE	setup_ip_maskl();	l = common[0][l_in >> 24]	  | common[1][(l_in >> 16) & 0xff]	  | common[2][(l_in >> 8) & 0xff]	  | common[3][l_in & 0xff]	  | common[4][r_in >> 24]	  | common[5][(r_in >> 16) & 0xff]	  | common[6][(r_in >> 8) & 0xff]	  | common[7][r_in & 0xff];	setup_ip_maskr();	r = common[0][l_in >> 24]	  | common[1][(l_in >> 16) & 0xff]	  | common[2][(l_in >> 8) & 0xff]	  | common[3][l_in & 0xff]	  | common[4][r_in >> 24]	  | common[5][(r_in >> 16) & 0xff]	  | common[6][(r_in >> 8) & 0xff]	  | common[7][r_in & 0xff];#else	l = ip_maskl[0][l_in >> 24]	  | ip_maskl[1][(l_in >> 16) & 0xff]	  | ip_maskl[2][(l_in >> 8) & 0xff]	  | ip_maskl[3][l_in & 0xff]	  | ip_maskl[4][r_in >> 24]	  | ip_maskl[5][(r_in >> 16) & 0xff]	  | ip_maskl[6][(r_in >> 8) & 0xff]	  | ip_maskl[7][r_in & 0xff];	r = ip_maskr[0][l_in >> 24]	  | ip_maskr[1][(l_in >> 16) & 0xff]	  | ip_maskr[2][(l_in >> 8) & 0xff]	  | ip_maskr[3][l_in & 0xff]	  | ip_maskr[4][r_in >> 24]	  | ip_maskr[5][(r_in >> 16) & 0xff]	  | ip_maskr[6][(r_in >> 8) & 0xff]	  | ip_maskr[7][r_in & 0xff];#endif	while (count--) {		/*		 * Do each round.		 */		kl = kl1;		kr = kr1;		round = 16;		while (round--) {			/*			 * Expand R to 48 bits (simulate the E-box).			 */			r48l	= ((r & 0x00000001) << 23)				| ((r & 0xf8000000) >> 9)				| ((r & 0x1f800000) >> 11)				| ((r & 0x01f80000) >> 13)				| ((r & 0x001f8000) >> 15);			r48r	= ((r & 0x0001f800) << 7)				| ((r & 0x00001f80) << 5)				| ((r & 0x000001f8) << 3)				| ((r & 0x0000001f) << 1)				| ((r & 0x80000000) >> 31);			/*			 * Do salting for crypt() and friends, and			 * XOR with the permuted key.			 */			f = (r48l ^ r48r) & saltbits;			r48l ^= f ^ *kl++;			r48r ^= f ^ *kr++;			/*			 * Do sbox lookups (which shrink it back to 32 bits)			 * and do the pbox permutation at the same time.			 */#ifdef LOWSPACE			setup_psbox();			f = common[0][m_sbox[0][r48l >> 12]]			  | common[1][m_sbox[1][r48l & 0xfff]]			  | common[2][m_sbox[2][r48r >> 12]]			  | common[3][m_sbox[3][r48r & 0xfff]];#else			f = psbox[0][m_sbox[0][r48l >> 12]]			  | psbox[1][m_sbox[1][r48l & 0xfff]]			  | psbox[2][m_sbox[2][r48r >> 12]]			  | psbox[3][m_sbox[3][r48r & 0xfff]];#endif			/*			 * Now that we've permuted things, complete f().			 */			f ^= l;			l = r;			r = f;		}		r = l;		l = f;	}	/*	 * Do final permutation (inverse of IP).	 */#ifdef LOWSPACE	setup_fp_maskl();	*l_out	= common[0][l >> 24]		| common[1][(l >> 16) & 0xff]		| common[2][(l >> 8) & 0xff]		| common[3][l & 0xff]		| common[4][r >> 24]		| common[5][(r >> 16) & 0xff]		| common[6][(r >> 8) & 0xff]		| common[7][r & 0xff];	setup_fp_maskr();	*r_out	= common[0][l >> 24]		| common[1][(l >> 16) & 0xff]		| common[2][(l >> 8) & 0xff]		| common[3][l & 0xff]		| common[4][r >> 24]		| common[5][(r >> 16) & 0xff]		| common[6][(r >> 8) & 0xff]		| common[7][r & 0xff];#else	*l_out	= fp_maskl[0][l >> 24]		| fp_maskl[1][(l >> 16) & 0xff]		| fp_maskl[2][(l >> 8) & 0xff]		| fp_maskl[3][l & 0xff]		| fp_maskl[4][r >> 24]		| fp_maskl[5][(r >> 16) & 0xff]		| fp_maskl[6][(r >> 8) & 0xff]		| fp_maskl[7][r & 0xff];	*r_out	= fp_maskr[0][l >> 24]		| fp_maskr[1][(l >> 16) & 0xff]		| fp_maskr[2][(l >> 8) & 0xff]		| fp_maskr[3][l & 0xff]		| fp_maskr[4][r >> 24]		| fp_maskr[5][(r >> 16) & 0xff]		| fp_maskr[6][(r >> 8) & 0xff]		| fp_maskr[7][r & 0xff];#endif	return(0);}#if 0static intdes_cipher(const char *in, char *out, my_u_int32_t salt, int count){	my_u_int32_t	l_out, r_out, rawl, rawr;	int		retval;	union {		my_u_int32_t	*ui32;		const char	*c;	} trans;	des_init();	setup_salt(salt);	trans.c = in;	rawl = ntohl(*trans.ui32++);	rawr = ntohl(*trans.ui32);	retval = do_des(rawl, rawr, &l_out, &r_out, count);	trans.c = out;	*trans.ui32++ = htonl(l_out);	*trans.ui32 = htonl(r_out);	return(retval);}#endifvoidsetkey(const char *key){	int	i, j;	my_u_int32_t	packed_keys[2];	my_u_char_t	*p;	p = (my_u_char_t *) packed_keys;	for (i = 0; i < 8; i++) {		p[i] = 0;		for (j = 0; j < 8; j++)			if (*key++ & 1)				p[i] |= bits8[j];	}	des_setkey(p);}voidencrypt(char *block, int flag){	my_u_int32_t	io[2];	my_u_char_t	*p;	int	i, j;	des_init();	setup_salt(0L);	p = block;	for (i = 0; i < 2; i++) {		io[i] = 0L;		for (j = 0; j < 32; j++)			if (*p++ & 1)				io[i] |= bits32[j];	}	do_des(io[0], io[1], io, io + 1, flag ? -1 : 1);	for (i = 0; i < 2; i++)		for (j = 0; j < 32; j++)			block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0;}char *crypt(const char *key, const char *setting){	my_u_int32_t	count, salt, l, r0, r1, keybuf[2];	my_u_char_t		*p, *q;	static char	output[21];	des_init();	/*	 * Copy the key, shifting each character up by one bit	 * and padding with zeros.	 */	q = (my_u_char_t *)keybuf;	while (q - (my_u_char_t *)keybuf - 8) {		*q++ = *key << 1;		if (*(q - 1))			key++;	}	if (des_setkey((char *)keybuf))		return(NULL);#if 0	if (*setting == _PASSWORD_EFMT1) {		int		i;		/*		 * "new"-style:		 *	setting - underscore, 4 bytes of count, 4 bytes of salt		 *	key - unlimited characters		 */		for (i = 1, count = 0L; i < 5; i++)			count |= ascii_to_bin(setting[i]) << ((i - 1) * 6);		for (i = 5, salt = 0L; i < 9; i++)			salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6);		while (*key) {			/*			 * Encrypt the key with itself.			 */			if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1))				return(NULL);			/*			 * And XOR with the next 8 characters of the key.			 */			q = (my_u_char_t *)keybuf;			while (q - (my_u_char_t *)keybuf - 8 && *key)				*q++ ^= *key++ << 1;			if (des_setkey((char *)keybuf))				return(NULL);		}		strncpy(output, setting, 9);		/*		 * Double check that we weren't given a short setting.		 * If we were, the above code will probably have created		 * wierd values for count and salt, but we don't really care.		 * Just make sure the output string doesn't have an extra		 * NUL in it.		 */		output[9] = '\0';		p = (my_u_char_t *)output + strlen(output);	} else #endif	{		/*		 * "old"-style:		 *	setting - 2 bytes of salt		 *	key - up to 8 characters		 */		count = 25;		salt = (ascii_to_bin(setting[1]) << 6)		     |  ascii_to_bin(setting[0]);		output[0] = setting[0];		/*		 * If the encrypted password that the salt was extracted from		 * is only 1 character long, the salt will be corrupted.  We		 * need to ensure that the output string doesn't have an extra		 * NUL in it!		 */		output[1] = setting[1] ? setting[1] : output[0];		p = (my_u_char_t *)output + 2;	}	setup_salt(salt);	/*	 * Do it.	 */	if (do_des(0L, 0L, &r0, &r1, (int)count))		return(NULL);	/*	 * Now encode the result...	 */	l = (r0 >> 8);	*p++ = ascii64[(l >> 18) & 0x3f];	*p++ = ascii64[(l >> 12) & 0x3f];	*p++ = ascii64[(l >> 6) & 0x3f];	*p++ = ascii64[l & 0x3f];	l = (r0 << 16) | ((r1 >> 16) & 0xffff);	*p++ = ascii64[(l >> 18) & 0x3f];	*p++ = ascii64[(l >> 12) & 0x3f];	*p++ = ascii64[(l >> 6) & 0x3f];	*p++ = ascii64[l & 0x3f];	l = r1 << 2;	*p++ = ascii64[(l >> 12) & 0x3f];	*p++ = ascii64[(l >> 6) & 0x3f];	*p++ = ascii64[l & 0x3f];	*p = 0;	return(output);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -