⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tsp_demo.cpp

📁 经典的用遗传算法解决TSP问题
💻 CPP
字号:
/*
用遗传算法(GA)解决TSP(旅行商)问题
完成时间:2005.8.2
编译环境:VC7.1 (用VC6的话需要修改几处,要把hash_map改为map)

作者:西南科技大学   唐坤(sf.tk)
QQ: 226152161
Blog: blog.gameres.com/show.asp?BlogID=1450&column=0
E-mail: starsftk@yahoo.com.cn

ps:初学遗传算法,很多都不懂,程序还有很多不足,若你改进了别忘了告诉我
*/

#include <cmath>
#include <ctime>
#include <vector>
#include <hash_map>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;

float pcross = 0.85;    //交叉率
float pmutation = 0.1; //变异率
int popsize = 300;  //种群大小
const int lchrom = 20;   //染色体长度
int gen;      //当前世代
int maxgen = 100;   //最大世代数
int run;    //当前运行次数
int maxruns =10;  //总运行次数
float max_var = 9 ; //路径最大连接开销!!

//基因定义(一个城市)
struct Gene
{	
	string name;
	hash_map<Gene*,float> linkCost; //该城市到其它城市的路程开销
};

//染色体定义(到各城市顺序的一种组合)
struct Chrom
{
	vector<Gene*> chrom_gene;  //染色体(到各城市去的顺序)
	float varible;   //路程总开销
	float fitness;   //个体适应度	  
};

//种群定义
struct Pop
{
	vector<Chrom> pop_chrom;  //种群里的染色体组
    float sumfitness;    //种群中个体适应度累计	 
};

Pop oldpop; //当前代种群
Pop newpop; //新一代种群
vector<Gene> genes(lchrom);  //保存全部基因



//产生一个随机整数(在[low,high)区间上)
inline int randomInt(int low,int high)
{
	if(low==high)
		return low;
	return low+rand()%(high-low);
}

//计算一条染色体的个体适应度
inline void chromCost(Chrom& chr)
{
	float sum=0;
	for(int i=0;i<chr.chrom_gene.size()-1;i++)
	{
		sum += (chr.chrom_gene[i])->linkCost[chr.chrom_gene[i+1]];
	}
	sum += (chr.chrom_gene.front())->linkCost[chr.chrom_gene.back()];
	chr.varible=sum;
	chr.fitness=max_var*(lchrom) - chr.varible;
}

//计算一个种群的个体适应度之和
inline void popCost(Pop &pop)
{
	float sum=0;
	for(int i=0;i<pop.pop_chrom.size();i++)
	{
		sum+=pop.pop_chrom[i].fitness;
	}
	pop.sumfitness = sum;
}

void outChrom(Chrom& chr);

//随机初始化一条染色体
inline void initChrom(Chrom& chr)
{	
	vector<int> tmp(lchrom);
	for(int i=0;i<lchrom;i++)
		tmp[i]=i;

	int choose;
	while(tmp.size()>1)
	{
		choose=randomInt(0,tmp.size());
		chr.chrom_gene.push_back(&genes[tmp[choose]]);
		tmp.erase(tmp.begin()+choose);
	}
	chr.chrom_gene.push_back(&genes[tmp[0]]);
	chromCost(chr);	
}

//随机初始化种群
inline void initpop(Pop& pop)
{
	pop.pop_chrom.reserve(popsize);
	Chrom tmp;
	tmp.chrom_gene.reserve(lchrom);
	for(int i=0;i<popsize;i++)
	{
		initChrom(tmp);
		pop.pop_chrom.push_back(tmp);
		tmp.chrom_gene.clear();
	}
	popCost(pop);
}


//轮盘赌选择,返回种群中被选择的个体编号
inline int selectChrom(const Pop& pop)
{
	float sum = 0;
	float pick = float(randomInt(0,1000))/1000;
	int i = 0;
	if(pop.sumfitness!=0)
	{
		while(1)
		{
			sum += pop.pop_chrom[i].fitness/pop.sumfitness;
			i++;
			if( (sum > pick) || i==pop.pop_chrom.size())
				return i-1;  //
		}		
	}
	else
		return randomInt(0,pop.pop_chrom.size());	
}

//精英策略,返回最优秀的一条染色体
inline int chooseBest(const Pop& pop)
{
	int choose = 0;
	float best = 0;
	for(int i = 0;i< pop.pop_chrom.size();i++)
	{
		if(pop.pop_chrom[i].fitness > best)
		{
			best = pop.pop_chrom[i].fitness;
			choose = i;
		}		
	}
	return choose;
}

//染色体交叉操作,由两个父代产生两个子代( 顺序交叉 OX )
inline void crossover(Chrom& parent1,Chrom& parent2,Chrom& child1,Chrom& child2)
{
	child1.chrom_gene.resize(lchrom);
	child2.chrom_gene.resize(lchrom);

	vector<Gene*>::iterator v_iter,p1_beg,p2_beg,c1_beg,c2_beg,p1_end,p2_end,c1_end,c2_end;	
	p1_beg = parent1.chrom_gene.begin();
    p2_beg = parent2.chrom_gene.begin();
	c1_beg = child1.chrom_gene.begin();
    c2_beg = child2.chrom_gene.begin();
	p1_end = parent1.chrom_gene.end();
    p2_end = parent2.chrom_gene.end();
	c1_end = child1.chrom_gene.end();
    c2_end = child2.chrom_gene.end();
	

	vector<Gene*> v1(parent2.chrom_gene),  v2(parent1.chrom_gene); //用于交叉的临时表	

	//随机选择两个交叉点
    int pick1 = randomInt(1,lchrom-2);
	int pick2 = randomInt(pick1+1,lchrom-1);
	int dist = lchrom-1-pick2; //第二交叉点到尾部的距离	

	//子代保持两交叉点间的基因不变
	copy(p1_beg+pick1, p1_beg+pick2+1, c1_beg+pick1);
    copy(p2_beg+pick1, p2_beg+pick2+1, c2_beg+pick1);
	
	//循环移动表中元素
	rotate(v1.begin(), v1.begin()+pick2+1,v1.end());
    rotate(v2.begin(), v2.begin()+pick2+1,v2.end());	

	//从表中除去父代已有的元素	
	for(v_iter = p1_beg+pick1; v_iter!=p1_beg+pick2+1; ++v_iter)	
		remove(v1.begin(),v1.end(),*v_iter);
	for(v_iter = p2_beg+pick1; v_iter!=p2_beg+pick2+1; ++v_iter)	
		remove(v2.begin(),v2.end(),*v_iter);	
    
	//把表中元素复制到子代中
	copy(v1.begin(), v1.begin()+dist, c1_beg+pick2+1);
	copy(v1.begin()+dist, v1.begin()+dist+pick1, c1_beg);
	copy(v2.begin(), v2.begin()+dist, c2_beg+pick2+1);
	copy(v2.begin()+dist, v2.begin()+dist+pick1, c2_beg);	
}

//染色体变异操作,随机交换两个基因
inline void mutation(Chrom& chr)
{
	vector<Gene*>::iterator beg = chr.chrom_gene.begin();
	int pick1,pick2;
	pick1 = randomInt(0,lchrom-1);
	do{
		pick2 =randomInt(0,lchrom-1);
	}while(pick1==pick2);

	iter_swap(beg+pick1, beg+pick2);
}

//世代进化(由当前种群产生新种群)
void generation(Pop& oldpop,Pop& newpop)
{	
	newpop.pop_chrom.resize(popsize);
	int mate1,mate2,j;
	float pick;
	float tmp;
	Chrom gene1,gene2,tmp1,tmp2;
	gene1.chrom_gene.resize(lchrom);
	gene2.chrom_gene.resize(lchrom);
	tmp1.chrom_gene.resize(lchrom);
	tmp2.chrom_gene.resize(lchrom);
	
	//将最佳染色体放入下一代
	mate1 = chooseBest(oldpop);
	newpop.pop_chrom[0] = oldpop.pop_chrom[mate1]; 
	j = 1;

	//产生两条新染色体
	do{
		int count = 0;
		mate1 = selectChrom(oldpop);
		mate2 = selectChrom(oldpop);
		pick = float(randomInt(0,1000))/1000;
		gene1= oldpop.pop_chrom[mate1];
		gene2= oldpop.pop_chrom[mate1];
		
		if(pick < pcross)  //交叉操作
		{
			int count = 0;
			bool flag1 = false;
			bool flag2 = false;
			while(1)
			{				
				crossover(oldpop.pop_chrom[mate1],oldpop.pop_chrom[mate2],tmp1,tmp2);
				chromCost(tmp1); //计算适应度
				chromCost(tmp2);
				if(tmp1.fitness > gene1.fitness)
				{
					gene1 = tmp1;
					flag1 = true;
				}
				if(tmp2.fitness > gene2.fitness)
				{
					gene2 = tmp2;
					flag2 = true;
				}
				if((flag1==true && flag2==true) || count> 40)
				{
					newpop.pop_chrom[j] = gene1;
				    newpop.pop_chrom[j+1] = gene2;
					break;
				}
				count++;
			}			
		}
		else
		{
			newpop.pop_chrom[j].chrom_gene = oldpop.pop_chrom[mate1].chrom_gene;
			newpop.pop_chrom[j+1].chrom_gene = oldpop.pop_chrom[mate2].chrom_gene;
			chromCost(newpop.pop_chrom[j]);
			chromCost(newpop.pop_chrom[j+1]);
		}		

		pick = float(randomInt(0,1000))/1000;
		if(pick < pmutation)  //变异操作
		{
			int count = 0;
			do{
				tmp = newpop.pop_chrom[j].fitness;
				mutation(newpop.pop_chrom[j]);
				chromCost(newpop.pop_chrom[j]); //计算适应度	
				count++;
			}while(tmp > newpop.pop_chrom[j].fitness && count < 30);
		}
		pick = float(randomInt(0,1000))/1000;
		if(pick < pmutation)  //变异操作
		{
			int count = 0;
			do{
				tmp = newpop.pop_chrom[j+1].fitness;
				mutation(newpop.pop_chrom[j+1]);
				chromCost(newpop.pop_chrom[j+1]); //计算适应度	
				count++;
			}while(tmp > newpop.pop_chrom[j+1].fitness && count < 30);
		}

		//chromCost(newpop.pop_chrom[j]); //计算适应度
		//chromCost(newpop.pop_chrom[j+1]);

		j += 2;		
	}while(j < popsize-1);

	popCost(newpop); //计算新种群的适应度之和	
}

//输出一条染色体信息
inline void outChrom(Chrom& chr)
{
	cout<<endl<<"路径:";
	for(int i=0;i<lchrom;i++)
	{
		cout<<chr.chrom_gene[i]->name;
	}
	cout<<endl<<"回路总开销:"<<chr.varible<<endl;
	cout<<"适应度:"<<chr.fitness<<endl;
}

int main()
{
	cout<<"*************用遗传算法解决TSP(旅行商)问题******************"<<endl;

	//string names[lchrom]={"A","B","C","D","E","F","G","H","I","J"};	 //基因(城市)名称
	string names[lchrom]={"A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T"};
	//用矩阵保存各城市间的路程开销
	//float dist[lchrom][lchrom] = {{0,8,5,4,1,2,3,1,5,6},{8,0,4,6,7,1,6,5,4,1},{5,4,0,3,1,2,9,8,1,5},{4,6,3,0,2,1,8,1,9,6},{1,7,1,2,0,5,6,1,3,4},
	//{2,1,2,1,5,0,7,3,2,8},{3,6,9,8,6,7,0,1,3,1},{1,5,8,1,1,3,1,0,9,2},{5,4,1,9,3,2,3,9,0,8},{6,1,5,6,4,8,1,2,8,0}};
	
	float dist[lchrom][lchrom] ={{0, 1, 4, 6, 8, 1, 3, 7, 2, 9, 7, 3, 4, 5, 8, 9, 2, 8, 2, 8},{1, 0, 7, 5, 3, 8, 3, 4, 2, 4, 4, 6, 2, 8, 2, 9, 4, 5, 2, 1},{4, 7, 0, 3, 8, 3, 7, 9, 1, 2, 5, 8, 1, 8, 9, 4, 7, 4, 8, 4},{6, 5, 3, 0, 3, 1, 5, 2, 9, 1, 3, 5, 7, 3, 4, 7, 3, 4, 5, 2},
	{8, 3, 8, 3, 0, 2, 3, 1, 4, 6, 3, 8, 4, 5, 2, 8, 1, 7, 4, 7},{1, 8, 3, 1, 2, 0, 3, 3, 9, 5, 4, 5, 2, 7, 3, 6, 2, 3, 7, 1},{3, 3, 7, 5, 3, 3, 0, 7, 5, 9, 3, 4, 5, 9, 3, 7, 3, 2, 8, 1},{7, 4, 9, 2, 1, 3, 7, 0, 1, 3, 4, 5, 2, 7, 6, 3, 3, 8, 3, 5},
	{2, 2, 1, 9, 4, 9, 5, 1, 0, 1, 3, 4, 7, 3, 7, 5, 9, 2, 1, 7},{9, 4, 2, 1, 6, 5, 9, 3, 1, 0, 3, 7, 3, 7, 4, 9, 3, 5, 2, 5},{7, 4, 5, 3, 3, 4, 3, 4, 3, 3, 0, 5, 7, 8, 4, 3, 1, 5, 9, 3},{3, 6, 8, 5, 8, 5, 4, 5, 4, 7, 5, 0, 8, 3, 1, 5, 8, 5, 8, 3},
	{4, 2, 1, 7, 4, 2, 5, 2, 7, 3, 7, 8, 0, 5, 7, 4, 8, 3, 5, 3},{5, 8, 8, 3, 5, 7, 9, 7, 3, 7, 8, 3, 5, 0, 8, 3, 1, 8, 4, 5},{8, 2, 9, 4, 2, 3, 3, 6, 7, 4, 4, 1, 7, 8, 0, 4, 2, 1, 8, 4},{9, 9, 4, 7, 8, 6, 7, 3, 5, 9, 3, 5, 4, 3, 4, 0, 4, 1, 8, 4},
	{2, 4, 7, 3, 1, 2, 3, 3, 9, 3, 1, 8, 8, 1, 2, 4, 0, 4, 3, 7},{8, 5, 4, 4, 7, 3, 2, 8, 2, 5, 5, 5, 3, 8, 1, 1, 4, 0, 2, 6},{2, 2, 8, 5, 4, 7, 8, 3, 1, 2, 9, 8, 5, 4, 8, 8, 3, 2, 0, 4},{8, 1, 4, 2, 7, 1, 1, 5, 7, 5, 3, 3, 3, 5, 4, 4, 7, 6, 4, 0}};
    
    //初始化基因(所有基因都保存在genes中)	
	int i,j;
	for(i=0;i<lchrom;i++)
	{
	    genes[i].name =names[i];
		for(j=0;j<lchrom;j++)
		{
			genes[i].linkCost[&genes[j]] = dist[i][j];
		}
	}

	//输出配置信息
	cout<<"\n染色体长度:"<<lchrom<<"\n种群大小:"<<popsize<<"\n交叉率:"<<pcross<<"\n变异率:"<<pmutation;
	cout<<"\n最大世代数:"<<maxgen<<"\n总运行次数:"<<maxruns<<"\n路径最大连接开销:"<<max_var<<endl;


	//输出路径信息
	cout<<endl<<"  ";
	for(int i=0;i<lchrom;i++)
		cout<<genes[i].name<<" ";
	cout<<endl;		
	for(int i=0;i<lchrom;i++)
	{
		cout<<genes[i].name<<":";
		for(j=0;j<lchrom;j++)
		{
			cout<<genes[i].linkCost[&genes[j]]<<" ";
		}
		cout<<endl;
	}
	cout<<endl;	
	
	int best;
	Chrom bestChrom; //全部种群中最佳染色体
	bestChrom.fitness = 0;
	float sumVarible = 0;
	float sumFitness = 0;

	//运行maxrns次
	for(run = 1;run<=maxruns;run++)
	{
		initpop(oldpop);  //产生初始种群
		//通过不断进化,直到达到最大世代数
		for(gen = 1;gen<=maxgen;gen++)
		{			
			generation(oldpop,newpop); //从当前种群产生新种群
			oldpop.pop_chrom.swap(newpop.pop_chrom); 
			oldpop.sumfitness = newpop.sumfitness;
			newpop.pop_chrom.clear();									
		}
		best = chooseBest(oldpop); //本次运行得出的最佳染色体
		if(oldpop.pop_chrom[best].fitness > bestChrom.fitness)
			bestChrom = oldpop.pop_chrom[best];
		sumVarible += oldpop.pop_chrom[best].varible;
		sumFitness += oldpop.pop_chrom[best].fitness;

		cout<<run<<"次"<<"Best:";
		outChrom(oldpop.pop_chrom[best]); //输出本次运行得出的最佳染色体
		cout<<endl;
		oldpop.pop_chrom.clear();
	}

	cout<<endl<<"一条最佳染色体:"; 
	outChrom(bestChrom);  //输出全部种群中最佳染色体
	cout<<endl<<endl<<"最佳染色体平均开销:"<<sumVarible/maxruns;
	cout<<endl<<"最佳染色体平均适应度:"<<sumFitness/maxruns<<endl;

	system("PAUSE");
	return 0;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -