📄 nonlin_02.cc
字号:
// file: $isip/class/numeric/NonlinearOptimization/nonlin_02.cc// version: $Id: nonlin_02.cc,v 1.3 2001/05/03 18:42:06 srivasta Exp $//// isip include files//#include "NonlinearOptimization.h"#include <Sigmoid.h>#include <Console.h>// method: diagnose//// arguments:// Integral::DEBUG level: (input) debug level for diagnostics//// return: a boolean value indicating status//boolean NonlinearOptimization::diagnose(Integral::DEBUG level_a) { //--------------------------------------------------------------------------- // // 0. preliminaries // //--------------------------------------------------------------------------- // output the class name // if (level_a > Integral::NONE) { SysString output(L"diagnosing class "); output.concat(CLASS_NAME); output.concat(L": "); Console::put(output); Console::increaseIndention(); } //-------------------------------------------------------------------------- // // 1. required public methods // //-------------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing required public methods...\n"); Console::increaseIndention(); } // do a quick test of constructors, destructors, and memory management // methods // NonlinearOptimization::setGrowSize(5); NonlinearOptimization* nonlin0 = new NonlinearOptimization; NonlinearOptimization* nonlin1 = new NonlinearOptimization(*nonlin0); NonlinearOptimization* nonlin2 = new NonlinearOptimization[10]; // clear pointers // delete [] nonlin2; // test the setDebug method // setDebug(debug_level_d); // test the eq method // delete nonlin1; nonlin1 = new NonlinearOptimization; nonlin2 = new NonlinearOptimization(*nonlin1); if (!nonlin2->eq(*nonlin1)) { nonlin2->debug(L"nonlin2"); nonlin1->debug(L"nonlin1"); return Error::handle(name(), L"eq", Error::TEST, __FILE__, __LINE__); } // test the clear method // delete nonlin1; nonlin1 = new NonlinearOptimization; nonlin2->clear(); if (!nonlin2->eq(*nonlin1)) { nonlin2->debug(L"nonlin2"); nonlin1->debug(L"nonlin1"); return Error::handle(name(), L"clear", Error::TEST, __FILE__, __LINE__); } // test the operator= method // *nonlin1 = *nonlin0; if (!nonlin2->eq(*nonlin0)) { nonlin2->debug(L"nonlin2"); nonlin1->debug(L"nonlin1"); return Error::handle(name(), L"operator=", Error::TEST, __FILE__,__LINE__); } // clear the pointers // delete nonlin0; delete nonlin1; delete nonlin2; // test i/o methods // NonlinearOptimization nonlin5; NonlinearOptimization nonlin6; // we need binary and text sof files // String tmp_filename0; Integral::makeTemp(tmp_filename0); String tmp_filename1; Integral::makeTemp(tmp_filename1); // open files in write mode // Sof tmp_file0; tmp_file0.open(tmp_filename0, File::WRITE_ONLY, File::TEXT); Sof tmp_file1; tmp_file1.open(tmp_filename1, File::WRITE_ONLY, File::BINARY); nonlin5.write(tmp_file0, 0); nonlin6.write(tmp_file0, 1); nonlin5.write(tmp_file1, 0); nonlin6.write(tmp_file1, 1); // close the files // tmp_file0.close(); tmp_file1.close(); // open the files in read mode // tmp_file0.open(tmp_filename0); tmp_file1.open(tmp_filename1); // read the NonlinearOptimizations from the text file // NonlinearOptimization nonlin7; NonlinearOptimization nonlin8; nonlin7.read(tmp_file0, 0); nonlin8.read(tmp_file0, 1); if (!nonlin7.eq(nonlin5) || !nonlin8.eq(nonlin6)) { nonlin5.debug(L"nonlin5"); nonlin6.debug(L"nonlin6"); nonlin7.debug(L"nonlin7"); nonlin8.debug(L"nonlin8"); return Error::handle(name(), L"read/write text", Error::TEST, __FILE__, __LINE__); } // read the NonlinearOptimizations from the binary file // nonlin7.clear(); nonlin8.clear(); nonlin7.read(tmp_file1, 0); nonlin8.read(tmp_file1, 1); if (!nonlin7.eq(nonlin5) || !nonlin8.eq(nonlin6)) { nonlin5.debug(L"nonlin5"); nonlin6.debug(L"nonlin6"); nonlin7.debug(L"nonlin7"); nonlin8.debug(L"nonlin8"); return Error::handle(name(), L"read/write binary", Error::TEST, __FILE__, __LINE__); } // close and delete the temporary files // tmp_file0.close(); tmp_file1.close(); // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } //--------------------------------------------------------------------------- // // 2. class-specific public methods: // Levenberg Marquardt methods // //--------------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing class-specific public methods: LevenbergMarquardt methods...\n"); Console::increaseIndention(); } // declare the measured data // VectorFloat params_fl; VectorDouble params_doub; VectorFloat x_fl; VectorDouble x_doub; VectorFloat y_fl; VectorDouble y_doub; VectorFloat stddev_fl; VectorDouble stddev_doub; VectorFloat final_params_fl; VectorDouble final_params_doub; // open the test file // String test_file(L"diagnose.sof"); Sof test_sof; test_sof.open(test_file); // read in the test data // String x_tag(L"x"); String y_tag(L"y"); String stddev_tag(L"stddev"); String init_params_tag(L"initial_params"); String final_params_tag(L"final_params"); params_fl.read(test_sof, 0, init_params_tag); x_fl.read(test_sof, 0, x_tag); y_fl.read(test_sof, 0, y_tag); stddev_fl.read(test_sof, 0, stddev_tag); final_params_fl.read(test_sof, 0, final_params_tag); params_doub.read(test_sof, 0, init_params_tag); x_doub.read(test_sof, 0, x_tag); y_doub.read(test_sof, 0, y_tag); stddev_doub.read(test_sof, 0, stddev_tag); final_params_doub.read(test_sof, 0, final_params_tag); test_sof.close(); // test levenbergMarquardt // float chi_sq_fl = 0; double chi_sq_doub = 0; NonlinearOptimization::levenbergMarquardt(params_fl, chi_sq_fl, x_fl, y_fl, stddev_fl, NonlinearOptimization::diagnoseSigmoidFl); NonlinearOptimization::levenbergMarquardt(params_doub, chi_sq_doub, x_doub, y_doub, stddev_doub, NonlinearOptimization::diagnoseSigmoidDoub); // verify that results match // if (!final_params_fl.almostEqual(params_fl)) { params_fl.debug(L"actual params"); final_params_fl.debug(L"expected params"); return Error::handle(name(), L"levenbergMarquardt (float)", Error::TEST, __FILE__, __LINE__); } if (!final_params_doub.almostEqual(params_doub)) { params_doub.debug(L"actual params"); final_params_doub.debug(L"expected params"); return Error::handle(name(), L"levenbergMarquardt (double)", Error::TEST, __FILE__, __LINE__); } // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } //--------------------------------------------------------------------------- // // 4. print completion message // //--------------------------------------------------------------------------- // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } if (level_a > Integral::NONE) { SysString output(L"diagnostics passed for class "); output.concat(name()); output.concat(L"\n"); Console::put(output); } // exit gracefully // return true;}// method: diagnoseSigmoidFl//// arguments:// float& y: (output) f(x)// VectorFloat& derivatives: (output) df/dparam(i) (x)// const float x: (input) test point// const VectorFloat& params: (input) parameters to test//// return: boolean value indicating status//// method to compute a sigmoid and its derivatives//boolean NonlinearOptimization::diagnoseSigmoidFl(float& y_a, VectorFloat& derivatives_a, const float x_a, const VectorFloat& params_a) { // setup the sigmoid // Sigmoid sig; sig.set(params_a(0), params_a(1), 0, params_a(2)); // find f(x) and the derivatives // float tmp; sig.compute(y_a, x_a); sig.derivativeGain(tmp, x_a); derivatives_a(0) = tmp; sig.derivativeSlope(tmp, x_a); derivatives_a(1) = tmp; sig.derivativeYOffset(tmp, x_a); derivatives_a(2) = tmp; // exit gracefully // return true;}// method: diagnoseSigmoidDoub//// arguments:// double& y: (output) f(x)// VectorDouble& derivatives: (output) df/dparam(i) (x)// const double x: (input) test point// const VectorDouble& params: (input) parameters to test//// return: boolean value indicating status//// method to compute a sigmoid and its derivatives//boolean NonlinearOptimization::diagnoseSigmoidDoub(double& y_a, VectorDouble& derivatives_a, const double x_a, const VectorDouble& params_a) { // setup the sigmoid // Sigmoid sig; sig.set(params_a(0), params_a(1), 0, params_a(2)); // find f(x) and the derivatives // double tmp; sig.compute(y_a, x_a); sig.derivativeGain(tmp, x_a); derivatives_a(0) = tmp; sig.derivativeSlope(tmp, x_a); derivatives_a(1) = tmp; sig.derivativeYOffset(tmp, x_a); derivatives_a(2) = tmp; // exit gracefully // return true;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -