⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nonlinearoptimization.h

📁 这是一个从音频信号里提取特征参量的程序
💻 H
字号:
// file: $isip/class/numeric/NonlinearOptimization/NonlinearOptimization.h// version: $Id: NonlinearOptimization.h,v 1.6 2002/07/11 03:35:34 picone Exp $//// make sure definitions are only made once//#ifndef ISIP_NONLINEAR_OPTIMIZATION#define ISIP_NONLINEAR_OPTIMIZATION#ifndef ISIP_LINEAR_ALGEBRA#include <LinearAlgebra.h>#endif#ifndef ISIP_MATRIX_DOUBLE#include <MatrixDouble.h>#endif#ifndef ISIP_MATRIX_FLOAT#include <MatrixFloat.h>#endif#ifndef ISIP_MEMORY_MANAGER#include <MemoryManager.h>#endif// NonlinearOptimization: a class to perform standard nonlinear optimization// techniques including parametric curve fitting and nonparametric// quadratic optimization//class NonlinearOptimization {    //---------------------------------------------------------------------------  //  // public constants  //  //---------------------------------------------------------------------------public:    // define the class name  //  static const String CLASS_NAME;    //----------------------------------------  //  // other important constants  //  //----------------------------------------    // Levenberg-Marquardt computation constants  //  static const float LEVMARQ_INIT_LAMBDA = 0.001;    //----------------------------------------  //  // i/o related constants  //  //----------------------------------------      static const String DEF_PARAM;    //----------------------------------------  //  // default values and arguments  //  //----------------------------------------      static const float DEF_LEVMARQ_CONVERGE = 0.1;    //----------------------------------------  //  // error codes  //  //----------------------------------------      static const long ERR = 35200;  static const long ERR_LEV_MARQ = 35201;    //---------------------------------------------------------------------------  //  // protected data  //  //---------------------------------------------------------------------------protected:  // typedef for the functional form to use for Levenberg-Marquardt  // optimization in  //  typedef boolean (*LEV_MARQ_FUNC_FLOAT)(float&, VectorFloat&, const float,					 const VectorFloat&);  typedef boolean (*LEV_MARQ_FUNC_DOUBLE)(double&, VectorDouble&, const double,					  const VectorDouble&);    // a static debug level  //  static Integral::DEBUG debug_level_d;    // a static memory manager  //  static MemoryManager mgr_d;    //---------------------------------------------------------------------------  //  // required public methods  //  //---------------------------------------------------------------------------public:    // method: name  //  static const String& name() {    return CLASS_NAME;  }    // other static methods  //  static boolean diagnose(Integral::DEBUG debug_level);    // method: setDebug  //  static boolean setDebug(Integral::DEBUG level) {    debug_level_d = level;    return true;  }    // method: debug  //  boolean debug(const unichar* msg) const {    return true;  }    // method: destructor  //  ~NonlinearOptimization() {}    // method: default constructor  //  NonlinearOptimization() {}    // method: copy constructor  //  NonlinearOptimization(const NonlinearOptimization& arg) {    assign(arg);  }    // method: assign  //  boolean assign(const NonlinearOptimization& copy_node) {    return true;  }    // method: operator=  //  NonlinearOptimization& operator= (const NonlinearOptimization& arg) {    assign(arg);    return *this;  }    // method: sofSize  //  long sofSize() const {    return 0;  }    // method: read  //  boolean read(Sof& sof, long tag, const String& name = CLASS_NAME) {    return true;  }  // method: write  //  boolean write(Sof& sof, long tag, const String& name = CLASS_NAME) const {    return true;  }  // method: readData  //  boolean readData(Sof& sof, const String& pname = DEF_PARAM,                   long size = SofParser::FULL_OBJECT,                   boolean param = true,                   boolean nested = false) {    return true;  }  // method: writeData  //  boolean writeData(Sof& sof, const String& name = DEF_PARAM) const {    return true;  }  // method: eq  //  boolean eq(const NonlinearOptimization& arg) const {    return true;  }    // method: new  //  static void* operator new(size_t size) {    return mgr_d.get();  }    // method: new[]  //  static void* operator new[](size_t size) {    return mgr_d.getBlock(size);  }    // method: delete  //  static void operator delete(void* ptr) {    mgr_d.release(ptr);  }    // method: delete[]  //  static void operator delete[](void* ptr) {    mgr_d.releaseBlock(ptr);  }    // method: setGrowSize  //   static boolean setGrowSize(long grow_size) {    return mgr_d.setGrow(grow_size);  }  // method: clear  //  boolean clear(Integral::CMODE cmode = Integral::DEF_CMODE) {    return true;  }    //---------------------------------------------------------------------------  //  // class-specific public methods:  //  parametric curve-fitting methods  //  //---------------------------------------------------------------------------  // method: levenbergMarquardt  //  least-squares Levenberg-Marquardt optimization  //  static boolean levenbergMarquardt(VectorFloat& params, float& chi_square,				    const VectorFloat& x, const VectorFloat& y,				    const VectorFloat& stddev,				    LEV_MARQ_FUNC_FLOAT func,				    float convergence=DEF_LEVMARQ_CONVERGE) {    return levMarqTemplate<MatrixFloat,VectorFloat,float>(params, chi_square,							  x, y, stddev,							  func,							  convergence);  }  // method: levenbergMarquardt  //  least-squares Levenberg-Marquardt optimization  //  static boolean levenbergMarquardt(VectorDouble& params, double& chi_square,				    const VectorDouble& x,				    const VectorDouble& y,				    const VectorDouble& stddev,				    LEV_MARQ_FUNC_DOUBLE func,				    double convergence=DEF_LEVMARQ_CONVERGE) {    return levMarqTemplate<MatrixDouble,VectorDouble,double>(params,							     chi_square,							     x, y, stddev,							     func,							     convergence);  }    //---------------------------------------------------------------------------  //  // private methods  //  //---------------------------------------------------------------------------private:  // templatized Levenberg-Marquardt optimization  //  template <class TMatrix, class TVector, class TIntegral>  static boolean levMarqTemplate(TVector& params,				 TIntegral& chi_square,				 const TVector& x,				 const TVector& y,				 const TVector& stddev,				 boolean (*)(TIntegral&, TVector&,					     const TIntegral, const TVector&),				 TIntegral convergence);  // auxiliary methods:  //  Levenberg-Marquardt routines  //  template <class TMatrix, class TVector, class TIntegral>  static boolean levMarqChiSquare(TIntegral& chi_square, TMatrix& alpha,				  TVector& beta, const TVector& x,				  const TVector& y,				  const TVector& inv_variance,				  const TVector& params,				  boolean (*)(TIntegral&, TVector&,					      const TIntegral,					      const TVector&));  // auxiliary methods:  //  general purpose  //  template <class TMatrix, class TIntegral>  static boolean scaleDiagonal(TMatrix& mat, const TIntegral& scale);  // auxiliary methods:  //  diagnose  //  static boolean diagnoseSigmoidFl(float& y, VectorFloat& derivatives,				   const float x,				   const VectorFloat& params);  static boolean diagnoseSigmoidDoub(double& y, VectorDouble& derivatives,				     const double x,				     const VectorDouble& params);};// end of include file// #endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -