📄 const_02.cc
字号:
// file: $isip/class/algo/Constant/const_02.cc// version: $Id: const_02.cc,v 1.5 2002/08/14 22:40:06 gao Exp $//// isip include files//#include "Constant.h"#include <Console.h>#include <Filename.h>// method: diagnose//// arguments:// Integral::DEBUG level: (input) debug level for diagnostics//// return: a boolean value indicating status//boolean Constant::diagnose(Integral::DEBUG level_a) { //--------------------------------------------------------------------------- // // 0. preliminaries // //--------------------------------------------------------------------------- // output the class name // if (level_a > Integral::NONE) { String output(L"diagnosing class "); output.concat(CLASS_NAME); output.concat(L": "); Console::put(output); Console::increaseIndention(); } //-------------------------------------------------------------------------- // // 1. required public methods // class constructors // //-------------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing required public methods...\n"); Console::increaseIndention(); } // test destructor/constructor(s) and memory management // Constant const0; const0.setAlgorithm(DATA); const0.setImplementation(READ); Constant const1(const0); if (!const1.eq(const0)) { return Error::handle(name(), L"copy constructor", Error::TEST, __FILE__, __LINE__); } // test large allocation construction and deletion // if (level_a == Integral::ALL) { Console::put(L"\ntesting large chunk memory allocation and deletion:\n"); // set the memory to a strange block size so we can hopefully catch any // frame overrun errors // Constant::setGrowSize((long)500); Constant* pconst = new Constant(); for (long j = 1; j <= 100; j++) { Constant** pconsts = new Constant*[j * 100]; // create the objects // for (long i = 0; i < j * 100; i++) { pconsts[i] = new Constant(); } // delete objects // for (long i = (j * 100) - 1; i >= 0; i--) { delete pconsts[i]; } delete [] pconsts; } delete pconst; } // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } //-------------------------------------------------------------------------- // // 2. required public methods // i/o methods // //-------------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing required public methods: i/o methods...\n"); Console::increaseIndention(); } const0.setAlgorithm(DATA); const0.setImplementation(READ); // we need binary and text sof files // String tmp_filename0; Integral::makeTemp(tmp_filename0); String tmp_filename1; Integral::makeTemp(tmp_filename1); // open files in write mode // Sof tmp_file0; tmp_file0.open(tmp_filename0, File::WRITE_ONLY, File::TEXT); Sof tmp_file1; tmp_file1.open(tmp_filename1, File::WRITE_ONLY, File::BINARY); const0.write(tmp_file0, (long)0); // const0.write(tmp_file1, (long)0); // close the files // tmp_file0.close(); tmp_file1.close(); // open the files in read mode // tmp_file0.open(tmp_filename0); tmp_file1.open(tmp_filename1); // read the object back // const1.read(tmp_file0, (long)0); const1.init(); if (!const0.eq(const1)) { return Error::handle(name(), L"i/o", Error::TEST, __FILE__, __LINE__); } const1.read(tmp_file1, (long)0); const1.init(); if (!const0.eq(const1)) { return Error::handle(name(), L"i/o", Error::TEST, __FILE__, __LINE__); } // close and delete the temporary files // tmp_file0.close(); tmp_file1.close(); File::remove(tmp_filename0); File::remove(tmp_filename1); // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } //--------------------------------------------------------------------------- // // 3. class-specific public methods: // set and get methods // //--------------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing class-specific public methods: set and get methods...\n"); Console::increaseIndention(); } // establish an object // const0.setAlgorithm(DATA); const0.setImplementation(READ); // check that the values were set // if (const0.algorithm_d != DATA) { return Error::handle(name(), L"setAlgorithm", Error::TEST, __FILE__, __LINE__); } else if (const0.implementation_d != READ) { return Error::handle(name(), L"setImplementation", Error::TEST, __FILE__, __LINE__); } // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } //--------------------------------------------------------------------------- // // 4. class-specific public methods: // computation methods // //--------------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing class-specific public methods: computational methods...\n"); Console::increaseIndention(); } // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing reading from a file...\n"); Console::increaseIndention(); } { Constant c1; c1.setFilename(L"diagnose_file.sof"); c1.setChannel(4); Vector < CircularBuffer < AlgorithmData> > in; Vector < AlgorithmData> out; // multip-channel and VectorFloat test // c1.apply(out, in); Vector<VectorFloat> result; result.setLength(4); result(0).assign(L"1, 3, 5, 7, 9"); result(1).assign(L"10, 30, 50, 70, 90"); result(2).assign(L"100, 300, 500, 700, 900"); result(3).assign(L"1000, 3000, 5000, 7000, 9000"); for (long i = 0; i < 4; i++) { if (!out(i).getVectorFloat().almostEqual(result(i))) { out(i).getVectorFloat().debug(L"out_coeffs"); result(i).debug(L"exp_coeffs"); return Error::handle(name(), L"apply compute from file", ERR, __FILE__, __LINE__); } } Constant c2; c2.setFilename(L"diagnose_file.sof"); c2.setChannel(1); Vector<AlgorithmData> out1; // VectorDouble type test // c2.setDataType(AlgorithmData::VECTOR_DOUBLE); c2.apply(out1, in); VectorDouble result_01; result_01.assign(L"1.2, 0.5, 1.851, 1.000009"); if (!out1(0).getVectorDouble().almostEqual(result_01)) { out1(0).getVectorFloat().debug(L"out_coeffs"); result_01.debug(L"exp_coeffs"); return Error::handle(name(), L"apply compute from file", ERR, __FILE__, __LINE__); } // VectorComplexDouble type test // c2.clear(); c2.setDataType(AlgorithmData::VECTOR_COMPLEX_DOUBLE); c2.apply(out1, in); VectorComplexDouble result_02; result_02.assign(L"1.2+8j,0.5+0.90002j,1.8500001+9j,1+7.87000001j"); if (!out1(0).getVectorComplexDouble().almostEqual(result_02)) { out1(0).getVectorFloat().debug(L"out_coeffs"); result_02.debug(L"exp_coeffs"); return Error::handle(name(), L"apply compute from file", ERR, __FILE__, __LINE__); } // VectorComplexFloat type test // c2.clear(); c2.setDataType(AlgorithmData::VECTOR_COMPLEX_FLOAT); c2.apply(out1, in); VectorComplexFloat result_03; result_03.assign(L"1+2.3j,3+4.5j,5+6.7j,7+3.234j,9+4.765j"); if (!out1(0).getVectorComplexFloat().almostEqual(result_03)) { out1(0).getVectorFloat().debug(L"out_coeffs"); result_03.debug(L"exp_coeffs"); return Error::handle(name(), L"apply compute from file", ERR, __FILE__, __LINE__); } // MatrixDouble type test // c2.clear(); c2.setDataType(AlgorithmData::MATRIX_DOUBLE); c2.apply(out1, in); MatrixDouble result_04; result_04.assign(3, 3, L"4, 3, 1, 7, 0, 4, 2, 8, 1"); if (!out1(0).getMatrixDouble().almostEqual(result_04)) { out1(0).getMatrixDouble().debug(L"out_coeffs"); result_04.debug(L"exp_coeffs"); return Error::handle(name(), L"apply compute from file", ERR, __FILE__, __LINE__); } // MatrixFloat type test //
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -