⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 covariance.h

📁 这是一个从音频信号里提取特征参量的程序
💻 H
字号:
// file: $isip/class/algo/Covariance/Covariance.h// version: $Id: Covariance.h,v 1.32 2002/07/02 12:55:31 picone Exp $//// make sure definitions are only made once//#ifndef ISIP_COVARIANCE#define ISIP_COVARIANCE// isip include files//#ifndef ISIP_ALGORITHM_BASE#include <AlgorithmBase.h>#endif// Covariance: a class that computes the covariance matrix from the// input signal. two implementations are supported: factored and// unfactored. unfactored implementation is described in:////  J.D. Markel and A.H. Gray, Jr.,//  Linear Prediction of Speech, Springer-Verlag Berlin Heidelberg,//  New York, New York, USA, pp. 51, 1976.//// the key equation is Eq. 3.37:////            N-1//   c[i,j] = sum x(n-i) x(n-j)//            n=M//// factored is a computationally efficient approach described in:////  J.D. Markel and A.H. Gray, Jr.,//  Linear Prediction of Speech, Springer-Verlag Berlin Heidelberg,//  New York, New York, USA, pp. 220, 1976.//// that produces the same result as the unfactored approach.//// the key equation is Eq. 9.10:////   c[i,j] = c[i-1,j-1] + x[M-i]*x[M-j] - x[N-i]x[N-j]//// this class has one other complication. in FRAME_INTERNAL mode,// it computes the covariance of the data within the current frame.// this is typically used in linear prediction analysis (CROSS_FRAME// also allows data outside the frame to be used in the standard// windowed covariance analysis).//// in contrast, in ACCUMULATE mode, it computes the covariance across// successive frames of data and returns the global covariance matrix// for the file.// // the key equation for ACCUMUlate mode is:////   if it is not the last frame:: c(i, j) += x(i) x(j),  u(i) += x(i)////   if it is  the last frame: C(i, j) = 1/N * sum{c(i,j)} - u(i) u(i)'//      class Covariance : public AlgorithmBase {    //---------------------------------------------------------------------------  //  // public constants  //  //---------------------------------------------------------------------------public:    // define the class name  //  static const String CLASS_NAME;  //----------------------------------------  //  // other important constants  //  //----------------------------------------  // define the algorithm choices  //  enum ALGORITHM { NORMAL = 0, DEF_ALGORITHM = NORMAL };  // define the implementation choices  //  enum IMPLEMENTATION { FACTORED = 0, UNFACTORED,			DEF_IMPLEMENTATION = FACTORED };    // define normalization choices  //  enum NORMALIZATION { NONE = 0, LENGTH, UNIT_ENERGY,		       DEF_NORMALIZATION = NONE };  // define the static NameMap objects  //  static const NameMap ALGO_MAP;  static const NameMap IMPL_MAP;  static const NameMap NORM_MAP;  //----------------------------------------  //  // i/o related constants  //  //----------------------------------------      static const String DEF_PARAM;  static const String PARAM_ALGORITHM;    static const String PARAM_IMPLEMENTATION;  static const String PARAM_CMODE;  static const String PARAM_NORMALIZATION;  static const String PARAM_ORDER;    //----------------------------------------  //  // default values and arguments  //  //----------------------------------------    // define the default value(s) of the class data  //  static const long DEF_ORDER = -1;  // define default argument(s)  //  static const AlgorithmData::COEF_TYPE DEF_COEF_TYPE =  AlgorithmData::SIGNAL;       //----------------------------------------  //  // error codes  //  //----------------------------------------      static const long ERR = 70400;    //---------------------------------------------------------------------------  //  // protected data  //  //---------------------------------------------------------------------------protected:  // algorithm name  //  ALGORITHM algorithm_d;  // implementation name  //  IMPLEMENTATION implementation_d;  // normalization name  //  NORMALIZATION normalization_d;      // specify a Covariance order  //  Long order_d;  // specific variables for accumulation update  //  Vector<MatrixFloat> accum_cov_d;   // covariance accumulation  Vector<VectorFloat> accum_sum_d;   // signal amplitude accumulation  Long accum_frame_d;                // number of frames received  // static memory manager  //  static MemoryManager mgr_d;    //---------------------------------------------------------------------------  //  // required public methods  //  //---------------------------------------------------------------------------public:    // method: name  //  static const String& name() {    return CLASS_NAME;  }  // other static methods  //  static boolean diagnose(Integral::DEBUG debug_level);    // debug methods:  //  setDebug is inherited from the AlgorithmBase class  //  boolean debug(const unichar* msg) const;  // method: destructor  //  ~Covariance() {}  // method: default constructor  //  Covariance(ALGORITHM algorithm = DEF_ALGORITHM,	     IMPLEMENTATION implementation = DEF_IMPLEMENTATION,	     NORMALIZATION normalization = DEF_NORMALIZATION,	     long order = DEF_ORDER) {    algorithm_d = algorithm;    implementation_d = implementation;    normalization_d = normalization;    order_d = order;    is_valid_d = false;  }    // method: copy constructor  //  Covariance(const Covariance& arg) {    assign(arg);  }  // method: assign  //  boolean assign(const Covariance& arg) {    algorithm_d = arg.algorithm_d;    implementation_d = arg.implementation_d;    order_d = arg.order_d;    return AlgorithmBase::assign(arg);  }    // method: operator=  //  Covariance& operator= (const Covariance& arg) {    assign(arg);    return *this;  }    // i/o methods  //  long sofSize() const;    boolean read(Sof& sof, long tag, const String& name = CLASS_NAME);  boolean write(Sof& sof, long tag, const String& name = CLASS_NAME) const;    boolean readData(Sof& sof, const String& pname = DEF_PARAM,                   long size = SofParser::FULL_OBJECT,                   boolean param = true,		   boolean nested = false);  boolean writeData(Sof& sof, const String& pname = DEF_PARAM) const;    // method: eq  //  boolean eq(const Covariance& arg) const {    return ((algorithm_d == arg.algorithm_d) &&	    (implementation_d == arg.implementation_d) &&	    order_d.eq(arg.order_d));  }      // method: new  //  static void* operator new(size_t size) {    return mgr_d.get();  }    // method: new[]  //  static void* operator new[](size_t size) {    return mgr_d.getBlock(size);  }  // method: delete  //  static void operator delete(void* ptr) {    mgr_d.release(ptr);  }    // method: delete[]  //  static void operator delete[](void* ptr) {    mgr_d.releaseBlock(ptr);  }    // method: setGrowSize  //  static boolean setGrowSize(long grow_size) {    return mgr_d.setGrow(grow_size);  }    // other memory management methods  //  boolean clear(Integral::CMODE ctype = Integral::DEF_CMODE);    //---------------------------------------------------------------------------  //  // class-specific public methods:  //  set methods    //  //---------------------------------------------------------------------------  // method: setAlgorithm  //  boolean setAlgorithm(ALGORITHM algorithm) {    algorithm_d = algorithm;    is_valid_d = false;    return true;    }  // method: setImplementation  //  boolean setImplementation(IMPLEMENTATION implementation) {    implementation_d = implementation;    is_valid_d = false;    return true;    }  // method: setNormalization  //  boolean setNormalization(NORMALIZATION normalization) {    normalization_d = normalization;    is_valid_d = false;    return true;    }    // method: setOrder  //  boolean setOrder(long order) {    order_d = order;      is_valid_d = false;    return true;  }  // method: set  //  boolean set(ALGORITHM algorithm = DEF_ALGORITHM,	      IMPLEMENTATION implementation = DEF_IMPLEMENTATION,	      NORMALIZATION normalization = DEF_NORMALIZATION,	      long order = DEF_ORDER) {    algorithm_d = algorithm;    implementation_d = implementation;    normalization_d = normalization;    order_d = order;    return true;  }  // method: setAccumulateVar  //  boolean setAccumulateVar(long num_channel, long dimension) {    accum_cov_d.setLength(num_channel);    accum_sum_d.setLength(num_channel);    accum_frame_d = 0;    for (long i = 0; i < num_channel; i++) {      accum_cov_d(i).setDimensions(dimension, dimension);      accum_cov_d(i).assign(0);      accum_sum_d(i).setLength(dimension);      accum_sum_d(i).assign((float)0);    }        return true;  }    //---------------------------------------------------------------------------  //  // class-specific public methods:  //  get methods    //  //---------------------------------------------------------------------------    // method: getAlgorithm  //  ALGORITHM getAlgorithm() const {    return algorithm_d;  }  // method: getImplementation  //  IMPLEMENTATION getImplementation() const {    return implementation_d;  }    // method: getNormalization  //  NORMALIZATION getNormalization() const {    return normalization_d;  }    // method: getOrder  //  long getOrder() const {    return order_d;  }  // method: get  //  boolean get(ALGORITHM& algorithm,	      IMPLEMENTATION& implementation,	      NORMALIZATION& normalization,	      long& order) const {    algorithm = algorithm_d;    implementation = implementation_d;    normalization = normalization_d;    order = order_d;    return true;  }  //---------------------------------------------------------------------------  //  // class-specific public methods:  //  computational methods  //  //---------------------------------------------------------------------------  boolean compute(MatrixFloat& output, const VectorFloat& input,		  AlgorithmData::COEF_TYPE input_coef_type = DEF_COEF_TYPE,		  long index = DEF_CHANNEL_INDEX);    boolean compute(MatrixComplexFloat& output, const VectorComplexFloat& input,		  AlgorithmData::COEF_TYPE input_coef_type = DEF_COEF_TYPE,		  long index = DEF_CHANNEL_INDEX);    //---------------------------------------------------------------------------  //  // class-specific public methods:  //  public methods required by the AlgorithmBase interface contract  //  //---------------------------------------------------------------------------  // assign method  //  boolean assign(const AlgorithmBase& arg);  // equality method  //  boolean eq(const AlgorithmBase& arg) const;  // method: className  //  const String& className() const {    return CLASS_NAME;  }  // initialization method  //  boolean init() {    return true;  }  // apply method  //  boolean apply(Vector<AlgorithmData>& output,		const Vector< CircularBuffer<AlgorithmData> >& input);    // method to set the parser  //  boolean setParser(SofParser* parser);  //---------------------------------------------------------------------------  //  // private methods  //  //---------------------------------------------------------------------------private:  // common i/o methods  //  boolean readDataCommon(Sof& sof, const String& pname,                         long size = SofParser::FULL_OBJECT,                         boolean param = true, boolean nested = false);  boolean writeDataCommon(Sof& sof, const String& pname) const;  // algorithm-specific compute methods: Normal (FRAME_INTERNAL)  //  boolean computeNormalFactored(MatrixFloat& output,				const VectorFloat& input);  boolean computeNormalUnFactored(MatrixFloat& output,				  const VectorFloat& input);  // algorithm-specific compute methods: Normal (ACCUMULATE)  //  boolean computeAccumulate(MatrixFloat& output,			    const VectorFloat& input,			    long chan);};// end of include file// #endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -