⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cov_02.cc

📁 这是一个从音频信号里提取特征参量的程序
💻 CC
字号:
// file: $isip/class/algo/Covariance/cov_02.cc// version: $Id: cov_02.cc,v 1.15 2002/03/31 00:18:04 gao Exp $//// isip include files//#include "Covariance.h"#include <Console.h>// method: diagnose//// arguments://  Integral::DEBUG level: (input) debug level for diagnostics//// return: a boolean value indicating status//boolean Covariance::diagnose(Integral::DEBUG level_a) {    //---------------------------------------------------------------------------  //  // 0. preliminaries  //  //---------------------------------------------------------------------------  // output the class name  //  if (level_a > Integral::NONE) {    SysString output(L"diagnosing class ");    output.concat(CLASS_NAME);    output.concat(L": ");    Console::put(output);    Console::increaseIndention();  }  // --------------------------------------------------------------------  //  // 1. required public methods  //  // --------------------------------------------------------------------  // set indentation  //  if (level_a > Integral::NONE) {    Console::put(L"testing required public methods...\n");    Console::increaseIndention();  }  Covariance cov_1(DEF_ALGORITHM, DEF_IMPLEMENTATION, DEF_NORMALIZATION, 2);  Covariance cov_2(cov_1);    if (!cov_2.eq(cov_1)) {    return Error::handle(name(), L"copy constructor/eq", Error::TEST,			 __FILE__, __LINE__);  }    // testing large chunk of memory allocation  //  Covariance::setGrowSize((long)500);  for (long j = 1; j <= 10; j++) {    Covariance** dyn_cov = new Covariance*[j * 100];        // create the objects    //    for (long i = 0; i < j * 100; i++) {      dyn_cov[i] = new Covariance();    }        // delete objects    //    for (long i = (j * 100) - 1; i >= 0; i--) {      delete dyn_cov[i];    }          delete [] dyn_cov;  }     // test the i/o methods  //  Covariance cov_3(DEF_ALGORITHM, DEF_IMPLEMENTATION, DEF_NORMALIZATION, 3);  Covariance cov_4;  Covariance cov_5;  // we need binary and text sof files  //  String tmp_filename0;  Integral::makeTemp(tmp_filename0);  String tmp_filename1;  Integral::makeTemp(tmp_filename1);  // open files in write mode  //  Sof tmp_file0;  tmp_file0.open(tmp_filename0, File::WRITE_ONLY, File::TEXT);  Sof tmp_file1;  tmp_file1.open(tmp_filename1, File::WRITE_ONLY, File::BINARY);  cov_3.write(tmp_file0, (long)0);  cov_3.write(tmp_file1, (long)0);  // close the files  //  tmp_file0.close();  tmp_file1.close();  // open the files in read mode  //  tmp_file0.open(tmp_filename0);  tmp_file1.open(tmp_filename1);  // read the value back  //  if (!cov_4.read(tmp_file0, (long)0) || !cov_4.eq(cov_3)) {    return Error::handle(name(), L"read", Error::TEST, __FILE__, __LINE__);  }    if (!cov_5.read(tmp_file1, (long)0) || !cov_5.eq(cov_3)) {    return Error::handle(name(), L"read", Error::TEST, __FILE__, __LINE__);  }    // close and  delete the temporary files  //  tmp_file0.close();  tmp_file1.close();  File::remove(tmp_filename0);  File::remove(tmp_filename1);  // reset indentation  //  if (level_a > Integral::NONE) {    Console::decreaseIndention();  }    // --------------------------------------------------------------------  //  // 2. class specific public methods:  //     set and get methods  //  // --------------------------------------------------------------------    // set indentation  //  if (level_a > Integral::NONE) {      Console::put(L"testing class-specific public methods: set and get methods...\n");    Console::increaseIndention();  }    // set and get the window size  //  Covariance cov_6;  cov_6.setOrder((long)4);  if (cov_6.getOrder() != 4) {    return Error::handle(name(), L"set /get Order", Error::TEST,			 __FILE__, __LINE__);  }  // reset indentation  //  if (level_a > Integral::NONE) {    Console::decreaseIndention();  }    // --------------------------------------------------------------------  //  // 3. class-specific public methods  //     computation methods  //  // --------------------------------------------------------------------  // set indentation  //  if (level_a > Integral::NONE) {    Console::put(L"testing class-specific public methods: computation methods...\n");    Console::increaseIndention();  }    // setup variables for test  //  VectorFloat input;  VectorFloat zeros(L"0,0,0,0,0");  VectorFloat ones(L"1,1,1,1,1");  VectorFloat general(L"0, 2, 1, 2, 0, -1, -2");  MatrixFloat result_01(5, 5, L"0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0");  MatrixFloat result_02(5, 5, L"0.2,0.2, 0.2, 0.2,0.2, 0.2,0.2,0.2,0.2,0.2, 0.2,0.2,0.2,0.2,0.2, 0.2,0.2,0.2,0.2,0.2, 0.2,0.2,0.2,0.2,0.2");  MatrixFloat result_03(3, 3, L"10, 6, 2, 6,10, 4, 2, 4, 9");  // normalize expected result  //  result_03.div(7);  // test factored implementation  //    // use the following data as input:  //   //  x(n) = 0 when n = 0, 1, 2, 3;   //  x(n) = 2*pow(0.99, n-4) - pow(0.99, 2(n-4)),  when 4 <= n < 20;  //  x(n) = 0 when n = 20, 21, 22, 23   //  input.clear();  input.setLength(24);    double z = 1;  for (long i = 4; i < 20; i++) {    input(i) = 2 * z - z * z;    z = 0.99 * z;  }  // expected covariance coefficients  //  MatrixFloat exp_coeffs;  MatrixFloat out_coeffs;  exp_coeffs.assign(5, 5, L"0.657422, 0.616563, 0.57561, 0.534578, 0.493479, 0.616563, 0.657422, 0.616563, 0.57561, 0.534578, 0.57561, 0.616563, 0.657422, 0.616563, 0.57561, 0.534578, 0.57561, 0.616563, 0.657422, 0.616563, 0.493479, 0.534578, 0.57561, 0.616563, 0.657422");  // case: Algorithm = NORMAL, Implementation = FACTORED,  //       Input = non-zero SIGNAL vector  //  cov_6.compute(out_coeffs, input);  if (!out_coeffs.almostEqual(exp_coeffs)) {    exp_coeffs.debug(L"expected");    out_coeffs.debug(L"factored");    return  Error::handle(name(), L"apply compute from factored", ERR,			    __FILE__, __LINE__);  }    // case: Algorithm = NORMAL, Implementation = FACTORED,  //       Input = zero SIGNAL vector  //  cov_6.compute(out_coeffs, zeros);  if (!out_coeffs.almostEqual(result_01)) {      return  Error::handle(name(), L"apply compute from factored", ERR,			    __FILE__, __LINE__);  }  // case: Algorithm = NORMAL, Implementation = FACTORED,  //       Input = SIGNAL vector of ones  //  cov_6.compute(out_coeffs, ones);  if (!out_coeffs.almostEqual(result_02)) {      return  Error::handle(name(), L"apply compute from factored", ERR,			    __FILE__, __LINE__);  }  // case: Algorithm = NORMAL, Implementation = FACTORED,  //       Input = non-zero SIGNAL vector  //  cov_6.setOrder(2);  cov_6.compute(out_coeffs, general);  if (!out_coeffs.almostEqual(result_03)) {      return  Error::handle(name(), L"apply compute from factored", ERR,			    __FILE__, __LINE__);  }  // case: Algorithm = NORMAL, Implementation = UNFACTORED,  //       Input = non-zero SIGNAL vector  //  cov_6.setImplementation(UNFACTORED);  cov_6.setOrder(4);  cov_6.compute(out_coeffs, input);  if (!out_coeffs.almostEqual(exp_coeffs)) {      exp_coeffs.debug(L"expected");      out_coeffs.debug(L"unfactored");      return  Error::handle(name(), L"apply compute from unfactored", ERR,			    __FILE__, __LINE__);  }  // case: Algorithm = NORMAL, Implementation = UNFACTORED,  //       Input = zero SIGNAL vector  //  cov_6.compute(out_coeffs, zeros);  if (!out_coeffs.almostEqual(result_01)) {      return  Error::handle(name(), L"apply compute from unfactored", ERR,			    __FILE__, __LINE__);  }  // case: Algorithm = NORMAL, Implementation = UNFACTORED,  //       Input = SIGNAL vector of ones  //  cov_6.compute(out_coeffs, ones);  if (!out_coeffs.almostEqual(result_02)) {      return  Error::handle(name(), L"apply compute from unfactored", ERR,			    __FILE__, __LINE__);  }  // case: Algorithm = NORMAL, Implementation = --,  //       Input = GENERIC  //  // calculate the covariance for the following function  // test calculate the covariance from file  //  Vector< CircularBuffer<AlgorithmData> > in;  Vector<AlgorithmData> out;  AlgorithmData data;    in.setLength(1);  out.setLength(1);  in(0).append(data);  in(0)(0).makeVectorFloat();  in(0)(0).setCoefType(AlgorithmData::GENERIC);    // set the order  //  cov_6.setOrder(4);  // compute the output  //  the first frame input  //  in(0)(0).getVectorFloat().assign(L"1, 0");  cov_6.apply(out, in);    // the other frame input  //  in(0)(0).getVectorFloat().assign(L"0, 1");  cov_6.apply(out, in);   // the last frame input  //  in(0)(0).getVectorFloat().assign(L"1, 1");  cov_6.setSignalDuration(0.03);  cov_6.apply(out, in);    exp_coeffs.clear();  exp_coeffs.assign(2, 2, L"0.222222, -0.111111, -0.111111, 0.222222");    if (!out(0).getMatrixFloat().almostEqual(exp_coeffs)) {    out(0).getMatrixFloat().debug(L"out_coeffs");    exp_coeffs.debug(L"exp_coeffs");    return  Error::handle(name(), L"apply compute from file", ERR,			  __FILE__, __LINE__);  }    // reset indentation  //  if (level_a > Integral::NONE) {    Console::decreaseIndention();  }  // --------------------------------------------------------------------  //  // 3. class-specific public methods  //     apply methods  //  // --------------------------------------------------------------------  // set indentation  //  if (level_a > Integral::NONE) {    Console::put(L"testing class-specific public methods: apply methods...\n");    Console::increaseIndention();  }  // case: Algorithm = NORMAL, Implementation = --,  //       Input = GENERIC  //  // number of channels  //  long N = 2;  cov_6.clear();    in.setLength(N);  out.setLength(N);  for (long i = 0; i < N; i++) {    in(i).append(data);    in(i)(0).makeVectorFloat();    in(i)(0).setCoefType(AlgorithmData::GENERIC);    in(i)(0).getVectorFloat().assign(L"1, 0");  }    // set the order  //  cov_6.setOrder(4);  // compute the output  //  the first frame input  //  cov_6.apply(out, in);  exp_coeffs.assign(2, 2, L"1, 0, 0, 0");  if (!out(0).getMatrixFloat().almostEqual(exp_coeffs) ||      !out(1).getMatrixFloat().almostEqual(exp_coeffs)) {    out(0).getMatrixFloat().debug(L"out_coeffs");    exp_coeffs.debug(L"exp_coeffs");    return  Error::handle(name(), L"apply compute from file", ERR,			  __FILE__, __LINE__);  }    // case: Algorithm = NORMAL, Implementation = FACTORED,  //       Input = non-zero SIGNAL vector  //  for (long i = 0; i < N; i++) {    in(i).append(data);    in(i)(0).makeVectorFloat();    in(i)(0).setCoefType(AlgorithmData::SIGNAL);    in(i)(0).getVectorFloat().assign(input);  }  cov_6.apply(out, in);    exp_coeffs.assign(5, 5, L"0.657422, 0.616563, 0.57561, 0.534578, 0.493479, 0.616563, 0.657422, 0.616563, 0.57561, 0.534578, 0.57561, 0.616563, 0.657422, 0.616563, 0.57561, 0.534578, 0.57561, 0.616563, 0.657422, 0.616563, 0.493479, 0.534578, 0.57561, 0.616563, 0.657422");  if (!out(0).getMatrixFloat().almostEqual(exp_coeffs) ||      !out(1).getMatrixFloat().almostEqual(exp_coeffs)) {    out(0).getMatrixFloat().debug(L"out_coeffs");    exp_coeffs.debug(L"exp_coeffs");    return  Error::handle(name(), L"apply compute from factored", ERR,			    __FILE__, __LINE__);  }  // reset indentation  //  if (level_a > Integral::NONE) {    Console::decreaseIndention();  }  //---------------------------------------------------------------------------  //  // 4. print completion message  //  //---------------------------------------------------------------------------  // reset indentation  //  if (level_a > Integral::NONE) {    Console::decreaseIndention();  }    if (level_a > Integral::NONE) {    SysString output(L"diagnostics passed for class ");    output.concat(name());    output.concat(L"\n");    Console::put(output);  }  // exit gracefully  //  return true;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -