⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 window.h

📁 这是一个从音频信号里提取特征参量的程序
💻 H
字号:
// file: $isip/class/algo/Window/Window.h// version: $Id: Window.h,v 1.42 2002/05/31 21:57:32 picone Exp $//// make sure definitions are only made once//#ifndef ISIP_WINDOW#define ISIP_WINDOW// isip include files//#ifndef ISIP_ALGORITHM_BASE#include <AlgorithmBase.h>#endif// Window: a class used to design various types of windows such as:// rectangular, hamming, hanning, blackman, and bartlett.  the windows// implemented here represent the most common windows found in the// signal processing literature. the user can select different types// of windows and apply them to a vector of data. alternatively, they// can define their own window in custom mode and apply that window on// input data.// class Window : public AlgorithmBase {  //---------------------------------------------------------------------------  //  // public constants  //  //---------------------------------------------------------------------------public:    // define the class name  //  static const String CLASS_NAME;  //----------------------------------------  //  // other important constants  //  //----------------------------------------    // define algorithm choices:  //  rectangular is chosen as the default for obvious reasons. the remaining  //  windows are listed in alphabetical order. custom is listed last  //  because it is a special case.  //  enum ALGORITHM { RECTANGULAR = 0, BLACKMAN, BARTLETT, DOLPH_CHEBYSHEV,		   GAUSSIAN, HAMMING, HANNING, KAISER, LIFTER, CUSTOM,		   DEF_ALGORITHM = RECTANGULAR };  // define implementation choices:  // multiplication is the only implementation for window since it  // multiplies the two vectors.  //  enum IMPLEMENTATION { MULTIPLICATION = 0,			DEF_IMPLEMENTATION = MULTIPLICATION };  // define alignment choices:  //  center means that the center of the window is aligned with  //  the center of the frame. left means that the first sample in  //  the window corresponds to the first sample in the current frame  //  (and the remainder of the window extends into the future). right  //  means that the last sample in the window corresponds to the last  //  sample in the frame (and the remainder of the window extends  //  into the past.  //    enum ALIGNMENT { CENTER = 0, LEFT, RIGHT, DEF_ALIGNMENT = CENTER };  // define normalization choices:  //  unit_energy means that the energy of the window function is always  //  normalized to be unity.  //  enum NORMALIZATION { NONE = 0, UNIT_ENERGY, DEF_NORMALIZATION = NONE };      // define static NameMap objects for the enumerated values  //  static const NameMap ALGO_MAP;  static const NameMap IMPL_MAP;  static const NameMap ALGN_MAP;  static const NameMap NORM_MAP;  //----------------------------------------  //  // i/o related constants  //  //----------------------------------------      static const String DEF_PARAM;  static const String PARAM_ALGORITHM;  static const String PARAM_IMPLEMENTATION;  static const String PARAM_ALIGNMENT;  static const String PARAM_NORMALIZATION;  static const String PARAM_DURATION;  static const String PARAM_CONSTANTS;  static const String PARAM_DATA;  static const String PARAM_CMODE;    //----------------------------------------  //  // default values and arguments  //  //----------------------------------------    // define the default value(s) of the class data  //  static const float DEF_DURATION = 0.025;    // define default argument(s)  //  static const AlgorithmData::COEF_TYPE DEF_COEF_TYPE = AlgorithmData::SIGNAL;    // default constants for each window algorithm  //  static const VectorFloat DEF_RECT_CONSTANTS;  static const VectorFloat DEF_BLCK_CONSTANTS;  static const VectorFloat DEF_BART_CONSTANTS;  static const VectorFloat DEF_DCHB_CONSTANTS;  static const VectorFloat DEF_GAUS_CONSTANTS;  static const VectorFloat DEF_HAMM_CONSTANTS;  static const VectorFloat DEF_HANN_CONSTANTS;  static const VectorFloat DEF_KAIS_CONSTANTS;  static const VectorFloat DEF_LIFT_CONSTANTS;  //----------------------------------------  //  // error codes  //  //----------------------------------------      static const long ERR = 72000;  static const long ERR_PRM = 72001;  //---------------------------------------------------------------------------  //  // protected data  //  //---------------------------------------------------------------------------protected:    // algorithm name  //  ALGORITHM algorithm_d;  // implementation name  //  IMPLEMENTATION implementation_d;  // alignment name  //  ALIGNMENT alignment_d;    // normalization name  //  NORMALIZATION normalization_d;  // window duration (in seconds)  //  Float duration_d;  // static memory manager  //  static MemoryManager mgr_d;  // this section contains data for a specific algorithm  //  // algorithm: non-CUSTOM  // mode: all  // implementation: MULTIPLICATION  //  // parameters of the window function:  //  since different algorithms require different numbers of parameters,  //  by making this a vector we are able to collapse all algorithms into  //  one set of function calls.  //  VectorFloat constants_d;  // algorithm: CUSTOM  // mode: all  // implementation: MULTIPLICATION  //  // a user-defined window function  //  VectorFloat data_d;    //---------------------------------------------------------------------------  //  // required public methods  //  //---------------------------------------------------------------------------public:      // method: name  //  static const String& name() {    return CLASS_NAME;  }    // other static methods  //  static boolean diagnose(Integral::DEBUG debug_level);    // debug methods:  //  setDebug is inherited from the base class    //  boolean debug(const unichar* msg) const;  // method: destructor  //  ~Window() {}  // method: default constructor  //  Window(ALGORITHM algorithm = DEF_ALGORITHM,	 IMPLEMENTATION implementation = DEF_IMPLEMENTATION,	 ALIGNMENT alignment = DEF_ALIGNMENT,	 NORMALIZATION normalization = DEF_NORMALIZATION,	 float duration = DEF_DURATION) {    algorithm_d = algorithm;    implementation_d = implementation;    alignment_d = alignment;    normalization_d = normalization;    duration_d = duration;    is_valid_d = false;  }      // method: copy constructor  //  Window(const Window& arg) {    assign(arg);  }  // assign methods  //  boolean assign(const Window& arg);    // method: operator=  //  Window& operator= (const Window& arg) {    assign(arg);    return *this;  }  // i/o methods  //  long sofSize() const;    boolean read(Sof& sof, long tag, const String& name = CLASS_NAME);  boolean write(Sof& sof, long tag, const String& name = CLASS_NAME) const;  boolean readData(Sof& sof, const String& pname = DEF_PARAM,		   long size = SofParser::FULL_OBJECT,		   boolean param = true,                   boolean nested = false);  boolean writeData(Sof& sof, const String& pname = DEF_PARAM) const;    // equality methods  //  boolean eq(const Window& arg) const;    // method: new  //  static void* operator new(size_t size) {    return mgr_d.get();  }  // method: new[]  //  static void* operator new[](size_t size) {    return mgr_d.getBlock(size);  }  // method: delete  //  static void operator delete(void* ptr) {    mgr_d.release(ptr);  }  // method: delete[]  //  static void operator delete[](void* ptr) {    mgr_d.releaseBlock(ptr);  }    // method: setGrowSize  //  static boolean setGrowSize(long grow_size) {    return mgr_d.setGrow(grow_size);  }    // other memory management methods  //  boolean clear(Integral::CMODE ctype = Integral::DEF_CMODE);    //---------------------------------------------------------------------------  //  // class-specific public methods  //  set methods  //  //---------------------------------------------------------------------------  // method: setAlgorithm  //  boolean setAlgorithm(ALGORITHM algorithm) {    algorithm_d = algorithm;    constants_d.clear(Integral::RESET);    is_valid_d = false;    return true;    }    // method: setImplementation  //  boolean setImplementation(IMPLEMENTATION implementation) {    implementation_d = implementation;    is_valid_d = false;    return true;    }    // method: setAlignment  //  boolean setAlignment(ALIGNMENT alignment) {    alignment_d = alignment;    is_valid_d = false;    return true;  }    // method: setNormalization  //  boolean setNormalization(NORMALIZATION normalization) {    normalization_d = normalization;    is_valid_d = false;    return true;   }    // method: setDuration  //  boolean setDuration(float duration) {    duration_d = duration;    is_valid_d = false;    return true;  }    // method: setSize  //  boolean setSize(long num_points) {    if (data_d.length() != num_points) {      data_d.setLength(num_points);      is_valid_d = false;    }    return true;   }  // method: setData  //  boolean setData(const VectorFloat& data) {    if (algorithm_d == CUSTOM) {      return data_d.assign(data);    }    else {      return Error::handle(name(), L"setData", ERR, __FILE__, __LINE__);    }  }  // method: set  //  boolean set(ALGORITHM algorithm = DEF_ALGORITHM,	      IMPLEMENTATION implementation = DEF_IMPLEMENTATION,	      ALIGNMENT alignment = DEF_ALIGNMENT,	      NORMALIZATION normalization = DEF_NORMALIZATION,	      float duration = DEF_DURATION) {    algorithm_d = algorithm;    implementation_d = implementation;    alignment_d = alignment;    normalization_d = normalization;    duration_d = duration;    is_valid_d = false;    return true;  }  // other set methods  //  boolean setConstants(const VectorFloat& constants);    //---------------------------------------------------------------------------  //  // class-specific public methods  //  get methods  //  //---------------------------------------------------------------------------  // method: getAlgorithm  //  ALGORITHM getAlgorithm() const {    return algorithm_d;  }  // method: getImplementation  //  IMPLEMENTATION getImplementation() const {    return implementation_d;  }    // method: getAlignment  //  ALIGNMENT getAlignment() const {    return alignment_d;  }    // method: getNormalization  //  NORMALIZATION getNormalization() const {    return normalization_d;  }  // method: getDuration  //  float getDuration() const {    return duration_d;  }  // method: getSize  //  long getSize() const {    return data_d.length();  }    // method: getData  //  const VectorFloat& getData() const {    return data_d;  }  // method: get  //  boolean get(ALGORITHM& algorithm,	      IMPLEMENTATION& implementation,	      ALIGNMENT& alignment,	      NORMALIZATION& normalization,	      float& duration) {    algorithm = algorithm_d;    implementation = implementation_d;    alignment = alignment_d;    normalization = normalization_d;    duration = duration_d;    return true;  }  // method: getConstants  //  const VectorFloat& getConstants() const {    return constants_d;  }  //---------------------------------------------------------------------------  //  // class-specific public methods:  //  computational methods  //  //---------------------------------------------------------------------------  boolean compute(VectorFloat& output, const VectorFloat& input,		  AlgorithmData::COEF_TYPE coef_type = DEF_COEF_TYPE,		  long index = DEF_CHANNEL_INDEX);  boolean compute(VectorComplexFloat& output, const VectorComplexFloat& input,		  AlgorithmData::COEF_TYPE coef_type = DEF_COEF_TYPE,		  long index = DEF_CHANNEL_INDEX);  //---------------------------------------------------------------------------  //  // class-specific public methods:  //  public methods required by the AlgorithmBase interface contract  //  //---------------------------------------------------------------------------  // assign method  //  boolean assign(const AlgorithmBase& arg);  // equality method  //  boolean eq(const AlgorithmBase& arg) const;  // method: className  //  const String& className() const {    return CLASS_NAME;  }  // initialization method  //  boolean init();  // apply method  //  boolean apply(Vector<AlgorithmData>& output,		const Vector< CircularBuffer<AlgorithmData> >& input);    // pad time methods:  //  windows typically extend beyond the current frame. the leading and  //  trailing pads return values in frames since the algorithm classes  //  are designed to be frame based.  //  long getLeadingPad() const;  long getTrailingPad() const;    // method to set the parser  //  boolean setParser(SofParser* parser);    //---------------------------------------------------------------------------  //  // private methods  //  //---------------------------------------------------------------------------private:  // common i/o methods  //  boolean readDataCommon(Sof& sof, const String& pname,                         long size = SofParser::FULL_OBJECT,                         boolean param = true, boolean nested = false);  boolean writeDataCommon(Sof& sof, const String& pname) const;  // common compute methods  //  boolean computeCommon(VectorFloat& vector_out,			const VectorFloat& vector_in);  boolean computeCommon(VectorComplexFloat& vector_out,			const VectorComplexFloat& vector_in);  // window generation methods:  //  these methods generate common window functions  //  boolean generateRectangular(VectorFloat& output,			      const VectorFloat& params,			      long num_points) const;  boolean generateBartlett(VectorFloat& output,			   const VectorFloat& params,			   long num_points) const;  boolean generateBlackman(VectorFloat& output,			   const VectorFloat& params,			   long num_points) const;    boolean generateDolphChebyshev(VectorFloat& output,				 const VectorFloat& params,				 long num_points) const;    boolean generateGaussian(VectorFloat& output,			   const VectorFloat& params,			   long num_points) const;    boolean generateGeneralizedHanning(VectorFloat& output,				     const VectorFloat& params,				     long num_points) const;    boolean generateKaiser(VectorFloat& output,			 const VectorFloat& params,			 long num_points) const;    boolean generateLifter(VectorFloat& output,			 const VectorFloat& params,			 long num_points) const;  boolean compute(VectorFloat& output_a,		  const CircularBuffer<AlgorithmData>& input_a,		  AlgorithmData::COEF_TYPE coef_type_a = DEF_COEF_TYPE,		  long channel_index_a = DEF_CHANNEL_INDEX);};// end of include file// #endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -