📄 refl_02.cc
字号:
} // compute the reflection coefficients using the autocorrelation // coefficients via the DURBAL algorithm with order M // reflc.set(AUTOCORRELATION, DURBIN, M, -200); reflc.compute(refl_coef, auto_coeff); if (!refl_coef.almostEqual(res_refl_coef_autoc)) { refl_coef.debug(L"refl_coef"); res_refl_coef_autoc.debug(L"res_refl_coef"); return Error::handle(name(), L"compute", ERR, __FILE__, __LINE__); } // since the order for computing the reflection coefficients is M // we sould get M reflection coefficients // if (refl_coef.length() != M) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // case: Algorithm = AUTOCORRELATION, Implementation = DURBIN // Input = zero CORRELATION vector // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // test the algorithm for a vector of zeros // auto_coeff.assign(0.0); reflc.compute(refl_coef, auto_coeff); if (!refl_coef.almostEqual(zeros)) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } refl_coef.clear(); // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // case: Algorithm = COVARIANCE, Implementation = CHOLESKY // Input = non-zero COVARIANCE matrix // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // compute the covariance coefficients of order M // Covariance covar(Covariance::DEF_ALGORITHM, Covariance::DEF_IMPLEMENTATION, Covariance::DEF_NORMALIZATION, M); MatrixFloat covar_coeff; covar.compute(covar_coeff, input); // compute the reflection coefficients using the covariance // coefficients via the CHOLESKY algorithm with order M // reflc.set(COVARIANCE, CHOLESKY, M, -200); reflc.compute(refl_coef, covar_coeff, AlgorithmData::COVARIANCE); if (!refl_coef.almostEqual(res_refl_coef_cov)) { res_pred_coef_cov.debug(L"res_pred_coef"); refl_coef.debug(L"refl_coef"); res_refl_coef_cov.debug(L"res_refl_coef"); return Error::handle(name(), L"compute", ERR, __FILE__, __LINE__); } // since the order for computing the reflection coefficients is M // we sould get M reflection coefficients // if (refl_coef.length() != M) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // case: Algorithm = COVARIANCE, Implementation = CHOLESKY // Input = zero COVARIANCE matrix // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // test the algorithm for a vector of zeros // covar_coeff.assign(0); reflc.compute(refl_coef, covar_coeff, AlgorithmData::COVARIANCE); if (!refl_coef.almostEqual(zeros)) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } refl_coef.clear(); // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // case: Algorithm = LATTICE, Implementation = BURG // Input = non-zero SIGNAL vector // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // compute the reflection coefficients using the BURG algorithm via // a lattice with order M // reflc.set(LATTICE, BURG, M, -200); reflc.compute(refl_coef, input, AlgorithmData::SIGNAL); if (!refl_coef.almostEqual(res_refl_coef_burg)) { refl_coef.debug(L"pred_coef"); res_refl_coef_burg.debug(L"res_refl_coef"); return Error::handle(name(), L"compute", ERR, __FILE__, __LINE__); } // since the order for computing the reflection coefficients is M // we sould get M reflection coefficients // if (refl_coef.length() != M) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // case: Algorithm = LATTICE, Implementation = BURG // Input = zero SIGNAL vector // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // test the algorithm for a vector of zeros // input.assign(0.0); reflc.compute(refl_coef, input, AlgorithmData::SIGNAL); if (!refl_coef.almostEqual(zeros)) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } refl_coef.clear(); // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // case: Algorithm = PREDICTION, Implementation = STEP_DOWN // Input = non-zero PREDICTION vector // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // compute the reflection coefficients from the predictor coefficients // pred_coef.assign(L"1.000000, -0.9666891, 0.00009353, 0.00009286241, 0.03525937"); reflc.setAlgorithm(PREDICTION); reflc.setImplementation(STEP_UP); reflc.compute(refl_coef, pred_coef, AlgorithmData::PREDICTION); VectorFloat res_refl_coef; res_refl_coef.assign(L"-0.9378492, 0.03325092, 0.03422026, 0.03525937"); if (!refl_coef.almostEqual(res_refl_coef, .3)) { refl_coef.debug(L"refl_coef from predictor"); return Error::handle(name(), L"computeFromRefelction", ERR, __FILE__, __LINE__); } // since we have used M + 1 predictor coefficients to compute the // reflection coefficients we should get M reflection coefficients // if (refl_coef.length() != M) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // case: Algorithm = PREDICTION, Implementation = STEP_DOWN // Input = zero PREDICTION vector // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // test the algorithm for a vector of zeros // pred_coef.assign(0.0); reflc.compute(refl_coef, pred_coef, AlgorithmData::PREDICTION); if (!refl_coef.almostEqual(zeros)) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } refl_coef.clear(); // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // case: Algorithm = LOG_AREA_RATIO, Implementation = KELLY_LOCHBAUM // Input = non-zero LOG_AREA_RATIO vector // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // compute the reflection coefficients from the log area ratio coefficients // VectorFloat log_arr_coef(L"3.43977, -0.0665264, -0.0684673, -0.070548"); reflc.setAlgorithm(LOG_AREA_RATIO); reflc.setImplementation(KELLY_LOCHBAUM); reflc.compute(refl_coef, log_arr_coef, AlgorithmData::LOG_AREA_RATIO); if (!refl_coef.almostEqual(refl_coef, .3)) { refl_coef.debug(L"refl_coef from log_arr"); return Error::handle(name(), L"computeFromLogArr", ERR, __FILE__, __LINE__); } // since we have used M log area ratio coefficients to compute the // reflection coefficients we should get M reflection coefficients // if (refl_coef.length() != M) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // case: Algorithm = LOG_AREA_RATIO, Implementation = KELLY_LOCHBAUM // Input = zero LOG_AREA_RATIO vector // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // test the algorithm for a vector of zeros // log_arr_coef.assign(0.0); reflc.compute(refl_coef, log_arr_coef, AlgorithmData::LOG_AREA_RATIO); if (!refl_coef.almostEqual(zeros)) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } refl_coef.clear(); } // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } // -------------------------------------------------------------------- // // 5. class-specific public methods // apply methods // // -------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing class-specific public methods: apply methods...\n"); Console::increaseIndention(); } // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // case: Algorithm = LATTICE, Implementation = BURG // Input = non-zero and zero SIGNAL at channel 0 and 1 // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // local variables // Vector< CircularBuffer<AlgorithmData> > in; Vector<AlgorithmData> out; AlgorithmData data; float z = 1; for (long i = 4; i < 20; i++) { input(i) = 2 * z - z * z; z = 0.99 * z; } // number of channels // long N = 2; in.setLength(N); out.setLength(N); for (long i = 0; i < N; i++) { in(i).append(data); in(i)(0).makeVectorFloat(); in(i)(0).setCoefType(AlgorithmData::SIGNAL); } in(0)(0).getVectorFloat().assign(input); input.assign((float)0); in(1)(0).getVectorFloat().assign(input); // compute the reflection coefficients using the BURG algorithm via // a lattice with order M // long M = 4; reflc.set(LATTICE, BURG, M, -200); reflc.apply(out, in); VectorFloat res_refl_coef_burg(L"-0.9378492, 0.03325069, 0.03421993, 0.03525940"); VectorFloat zeros(L"0, 0, 0, 0"); if (!out(0).getVectorFloat().almostEqual(res_refl_coef_burg)) { out(0).getVectorFloat().debug(L"refl(0)"); res_refl_coef_burg.debug(L"res_refl_coef"); return Error::handle(name(), L"diagnose", ERR, __FILE__, __LINE__); } if (!out(1).getVectorFloat().almostEqual(zeros)) { out(1).getVectorFloat().debug(L"refl(1)"); zeros.debug(L"zeros_refl_coef"); return Error::handle(name(), L"diagnose", ERR, __FILE__, __LINE__); } Error::reset(); Error::set(Error::WARNING); // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } //--------------------------------------------------------------------------- // // 6. print completion message // //--------------------------------------------------------------------------- // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } if (level_a > Integral::NONE) { SysString output(L"diagnostics passed for class "); output.concat(name()); output.concat(L"\n"); Console::put(output); } // exit gracefully // return true;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -