📄 refl_02.cc
字号:
// file: $isip/class/algo/Reflection/refl_02.cc// version: $Id: refl_02.cc,v 1.12 2002/02/06 03:16:43 zheng Exp $//// isip include files//#include "Reflection.h"#include <Console.h>// method: diagnose//// arguments:// Integral::DEBUG level: (input) debug level for diagnostics//// return: a boolean value indicating status//boolean Reflection::diagnose(Integral::DEBUG level_a) { //--------------------------------------------------------------------------- // // 0. preliminaries // //--------------------------------------------------------------------------- // output the class name // if (level_a > Integral::NONE) { SysString output(L"diagnosing class "); output.concat(CLASS_NAME); output.concat(L": "); Console::put(output); Console::increaseIndention(); } //-------------------------------------------------------------------------- // // 1. required public methods // //-------------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing required public methods...\n"); Console::increaseIndention(); } // test memory manager methods // Reflection refl; Reflection::setGrowSize((long)500); Reflection* reflp = new Reflection(); for (long j = 1; j <= 100; j++) { Reflection** refl1 = new Reflection*[j * 100]; // create the objects // for (long i = 0; i < j * 100; i++) { refl1[i] = new Reflection(); } // delete objects // for (long i = (j * 100) - 1; i >= 0; i--) { delete refl1[i]; } delete [] refl1; } delete reflp; // test i/o methods // Reflection refl0; Reflection refl1; Reflection refl2; refl0.set(COVARIANCE, CHOLESKY, 20, -30); // we need binary and text sof files // String tmp_filename0; Integral::makeTemp(tmp_filename0); String tmp_filename1; Integral::makeTemp(tmp_filename1); // open files in write mode // Sof tmp_file0; tmp_file0.open(tmp_filename0, File::WRITE_ONLY, File::TEXT); Sof tmp_file1; tmp_file1.open(tmp_filename1, File::WRITE_ONLY, File::BINARY); refl0.write(tmp_file0, (long)0); refl0.write(tmp_file1, (long)0); // close the files // tmp_file0.close(); tmp_file1.close(); // open the files in read mode // tmp_file0.open(tmp_filename0); tmp_file1.open(tmp_filename1); // read the value back // if (!refl1.read(tmp_file0, (long)0) || (refl1.getOrder() != refl0.getOrder()) || (refl1.getDynRange() != refl0.getDynRange()) || (refl1.getAlgorithm() != refl0.getAlgorithm())) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } if (!refl2.read(tmp_file0, (long)0) || (refl2.getOrder() != refl0.getOrder()) || (refl2.getDynRange() != refl0.getDynRange()) || (refl2.getAlgorithm() != refl0.getAlgorithm())) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } // close and delete the temporary files // tmp_file0.close(); tmp_file1.close(); File::remove(tmp_filename0); File::remove(tmp_filename1); // test the conditional i/o methods // Reflection refl_0; refl_0.setOrder(20); Sof tmp_file2; String tmp_filename2; Integral::makeTemp(tmp_filename2); tmp_file2.open(tmp_filename2, File::WRITE_ONLY); refl_0.write(tmp_file2, (long)1); // close the file // tmp_file2.close(); // open the file in read mode // tmp_file2.open(tmp_filename2); refl_0.read(tmp_file2, (long)5); if (refl_0.getOrder() != 20) { return Error::handle(name(), L"readData", Error::TEST, __FILE__, __LINE__); } refl_0.read(tmp_file2, (long)1); // close and delete the temporary files // tmp_file2.close(); File::remove(tmp_filename2); if (level_a > Integral::BRIEF) { Console::close(); File::remove(tmp_filename0); Console::put(L"closed and removed temp console"); } // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } //--------------------------------------------------------------------------- // // 3. class-specific public methods: // set and get methods // //--------------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing class-specific public methods: set and get methods...\n"); Console::increaseIndention(); } // set and get the order // Reflection reflc_1; reflc_1.setOrder((long)4); if (reflc_1.getOrder() != 4) { return Error::handle(name(), L"set/get order", Error::TEST, __FILE__, __LINE__); } // set and get the algorithm // reflc_1.setAlgorithm(AUTOCORRELATION); if (reflc_1.getAlgorithm() != AUTOCORRELATION) { return Error::handle(name(), L"set/get algorithm", Error::TEST, __FILE__, __LINE__); } // set and get the dynamic range // reflc_1.setDynRange((float)4.5); if (reflc_1.getDynRange() != 4.5) { return Error::handle(name(), L"set/get DynRange", Error::TEST, __FILE__, __LINE__); } // set and get the set // long ord; ALGORITHM alg; IMPLEMENTATION imp; float dyn; reflc_1.set(AUTOCORRELATION, DURBIN, 4, (float)4.5); reflc_1.get(alg, imp, ord, dyn); if ((ord != 4) || (alg != AUTOCORRELATION) || (imp != DURBIN) || (dyn != 4.5)) { return Error::handle(name(), L"set/get method", Error::TEST, __FILE__, __LINE__); } // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } //--------------------------------------------------------------------------- // // 4. class-specific public methods: // computational methods // //--------------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing class-specific public methods: computational methods...\n"); Console::increaseIndention(); } // setup variables for test // Reflection reflc; VectorFloat input; VectorFloat refl_coef; VectorFloat pred_coef; { // declare the number of samples // int N = 24; // declare the order // long M = 4; // use the following data as input: // // x(n) = 0 when n = 0, 1, 2, 3; // x(n) = 1*pow(0.99, n-4) - pow(0.99, 2(n-4)), when 4 <= n < 20; // x(n) = 0 when n = 20, 21, 22, 23 // input.setLength(N); float z = 1; for (long i = 4; i < 20; i++) { input(i) = 2 * z - z * z; z = 0.99 * z; } // expected prediction coeffience and reflection coefficients for the // autocorrelation, covariance and burg analysis // VectorFloat res_pred_coef_autoc; VectorFloat res_pred_coef_cov; VectorFloat res_pred_coef_burg; VectorFloat res_refl_coef_autoc; VectorFloat res_refl_coef_cov; VectorFloat res_refl_coef_burg; VectorFloat zeros; res_pred_coef_autoc.assign(L"1.000000, -0.9666891, 0.00009353, 0.00009286241, 0.03525937"); res_pred_coef_cov.assign(L"1.000000, -0.9666891, 0.0000935849, 0.000092812, 0.03525938"); res_pred_coef_burg.assign(L"1.0000000, -0.9666889, 0.00009363125, 0.00009251215, 0.03525940"); zeros.assign(L"0, 0, 0, 0"); res_refl_coef_autoc.assign(L"-0.9378492, 0.03325092, 0.03422026, 0.03525937"); res_refl_coef_cov.assign(L"-0.9378492, 0.03325093, 0.03422021, 0.03525938"); res_refl_coef_burg.assign(L"-0.9378492, 0.03325069, 0.03421993, 0.03525940"); // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // case: Algorithm = AUTOCORRELATION, Implementation = DURBIN // Input = non-zero CORRELATION vector // =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= // compute the autocorrelation coefficients with order M // Correlation autoCorr(Correlation::AUTO, Correlation::FACTORED, Correlation::NONE, M); VectorFloat auto_coeff; autoCorr.compute(auto_coeff, input); // since the order for computing the autocorrelation coefficient is M // we sould get M + 1 autocorrelation coefficient // if (auto_coeff.length() != M + 1) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -