⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cep_05.cc

📁 这是一个从音频信号里提取特征参量的程序
💻 CC
📖 第 1 页 / 共 3 页
字号:
//boolean Cepstrum::computeIdctT2Float(VectorFloat& cepstrum_a,				     const VectorFloat& logspectrum_a) {    // check the algorithm and implementation  //  if ((algorithm_d = IDCT) && (implementation_d != TYPE_II)) {    return Error::handle(name(), L"computeIdctT2Float",			 ERR, __FILE__, __LINE__);  }  // declare local variable  //  long comp_num_coeffs = order_d + (long)1;    // compute the order  //  Long order;  order.max(comp_num_coeffs, logspectrum_a.length());    // setup the algorithm  //  if (!ft_d.setAlgorithm(FourierTransform::DCT)) {    return Error::handle(name(), L"computeIdctT2Float",			 ERR, __FILE__, __LINE__);  }    // setup the implementation  //  if (!ft_d.setImplementation(FourierTransform::TYPE_II)) {    return Error::handle(name(), L"computeIdctT2Float",			 ERR, __FILE__, __LINE__);  }  // setup the direction  //  if (!ft_d.setDirection(FourierTransform::INVERSE)) {    return Error::handle(name(), L"computeIdctT2Float",			 ERR, __FILE__, __LINE__);  }  // setup the resolution  //  if (!ft_d.setResolution(FourierTransform::FIXED)) {    return Error::handle(name(), L"computeIdctT2Float",			 ERR, __FILE__, __LINE__);  }  // setup the input length (order of IDCT)  //  if (!ft_d.setInputLength(order)) {    return Error::handle(name(), L"computeIdctT2Float",			 ERR, __FILE__, __LINE__);  }  // setup the output length  //  if (!ft_d.setOutputLength(comp_num_coeffs)) {    return Error::handle(name(), L"computeIdctT2Float",			 ERR, __FILE__, __LINE__);  }    // call compute method of fourier transform  //  if (!ft_d.compute(cepstrum_a, logspectrum_a)) {    return Error::handle(name(), L"computeIdctT2Float",			 ERR, __FILE__, __LINE__);  }    // output debugging information  //  if (debug_level_d >= Integral::ALL) {    cepstrum_a.debug(L"cepstrum");  }    // exit gracefully  //  return true;}// method: computeIdctT3Float//// arguments://  VectorFloat& cepstrum: (output) cepstral coefficients//  const VectorFloat& logspectrum: (input) input log magnitude spectrum//// return: a boolean value indicating status//// this method gives the cepstral coefficients for given input log// magnitude spectrum using IDCT algorithm and TYPE_III implementation//boolean Cepstrum::computeIdctT3Float(VectorFloat& cepstrum_a,				      const VectorFloat& logspectrum_a) {    // check the algorithm and implementation  //  if ((algorithm_d = IDCT) && (implementation_d != TYPE_III)) {    return Error::handle(name(), L"computeIdctT3Float",			 ERR, __FILE__, __LINE__);  }  // declare local variable  //  long comp_num_coeffs = order_d + (long)1;  // compute the order  //  Long order;  order.max(comp_num_coeffs, logspectrum_a.length());    // setup the algorithm  //  if (!ft_d.setAlgorithm(FourierTransform::DCT)) {    return Error::handle(name(), L"computeIdctT3Float",			 ERR, __FILE__, __LINE__);  }    // setup the implementation  //  if (!ft_d.setImplementation(FourierTransform::TYPE_III)) {    return Error::handle(name(), L"computeIdctT3Float",			 ERR, __FILE__, __LINE__);  }  // setup the direction  //  if (!ft_d.setDirection(FourierTransform::INVERSE)) {    return Error::handle(name(), L"computeIdctT3Float",			 ERR, __FILE__, __LINE__);  }  // setup the resolution  //  if (!ft_d.setResolution(FourierTransform::FIXED)) {    return Error::handle(name(), L"computeIdctT3Float",			 ERR, __FILE__, __LINE__);  }  // setup the input length (order of computeIdct)  //  if (!ft_d.setInputLength(order)) {    return Error::handle(name(), L"computeIdctT3Float",			 ERR, __FILE__, __LINE__);  }  // setup the output length  //  if (!ft_d.setOutputLength(comp_num_coeffs)) {    return Error::handle(name(), L"computeIdctT3Float",			 ERR, __FILE__, __LINE__);  }    // call compute method of fourier transform  //  if (!ft_d.compute(cepstrum_a, logspectrum_a)) {    return Error::handle(name(), L"computeIdctT3Float",			 ERR, __FILE__, __LINE__);  }    // output debugging information  //  if (debug_level_d >= Integral::ALL) {    cepstrum_a.debug(L"cepstrum");  }    // exit gracefully  //  return true;}// method: computeIdctT4Float//// arguments://  VectorFloat& cepstrum: (output) cepstral coefficients//  const VectorFloat& logspectrum: (input) input log magnitude spectrum//// return: a boolean value indicating status//// this method gives the cepstral coefficients for given input log// magnitude spectrum using computeIdct algorithm and TYPE_IV implementation//boolean Cepstrum::computeIdctT4Float(VectorFloat& cepstrum_a,			     const VectorFloat& logspectrum_a) {    // check the algorithm and implementation  //  if ((algorithm_d = IDCT) && (implementation_d != TYPE_IV)) {    return Error::handle(name(), L"computeIdctT4Float",			 ERR, __FILE__, __LINE__);  }    // declare local variable  //  long comp_num_coeffs = order_d + (long)1;  // compute the order  //  Long order;  order.max(comp_num_coeffs, logspectrum_a.length());    // setup the algorithm  //  if (!ft_d.setAlgorithm(FourierTransform::DCT)) {    return Error::handle(name(), L"computeIdctT4Float",			 ERR, __FILE__, __LINE__);  }    // setup the implementation  //  if (!ft_d.setImplementation(FourierTransform::TYPE_IV)) {    return Error::handle(name(), L"computeIdctT4Float",			 ERR, __FILE__, __LINE__);  }  // setup the direction  //  if (!ft_d.setDirection(FourierTransform::INVERSE)) {    return Error::handle(name(), L"computeIdctT4Float",			 ERR, __FILE__, __LINE__);  }  // setup the resolution  //  if (!ft_d.setResolution(FourierTransform::FIXED)) {    return Error::handle(name(), L"computeIdctT4Float",			 ERR, __FILE__, __LINE__);  }  // setup the input length (order of computeIdct)  //  if (!ft_d.setInputLength(order)) {    return Error::handle(name(), L"computeIdctT4Float",			 ERR, __FILE__, __LINE__);  }  // setup the output length  //  if (!ft_d.setOutputLength(comp_num_coeffs)) {    return Error::handle(name(), L"computeIdctT4Float",			 ERR, __FILE__, __LINE__);  }    // call compute method of fourier transform  //  if (!ft_d.compute(cepstrum_a, logspectrum_a)) {    return Error::handle(name(), L"computeIdctT4Float",			 ERR, __FILE__, __LINE__);  }    // output debugging information  //  if (debug_level_d >= Integral::ALL) {    cepstrum_a.debug(L"cepstrum");  }    // exit gracefully  //  return true;}// method: computeIdftConvRealFloat//// arguments://  VectorComplexFloat& cepstrum: (output) cepstral coefficients//  const VectorFloat& logspectrum: (input) input log magnitude spectrum//// return: a boolean value indicating status//// this method implements a DFT-based computation on floats.//boolean Cepstrum::computeIdftConvRealFloat(VectorComplexFloat& cepstrum_a,					   const VectorFloat& logspectrum_a) {    // check the algorithm and implementation  //  if ((algorithm_d != IDFT) && (implementation_d != CONVENTIONAL)) {    return Error::handle(name(), L"computeIdftConvRealFloat",			 ERR, __FILE__, __LINE__);  }  // declare local variable  //  long comp_num_coeffs = order_d + (long)1;  // compute the order  //  Long order;  order.max(comp_num_coeffs, logspectrum_a.length());    // setup the algorithm  //  if (!ft_d.setAlgorithm(FourierTransform::DFT)) {    return Error::handle(name(), L"computeIdftConvRealFloat",			 ERR, __FILE__, __LINE__);  }    // setup the implementation  //  if (!ft_d.setImplementation(FourierTransform::CONVENTIONAL)) {    return Error::handle(name(), L"computeIdftConvRealFloat",			 ERR, __FILE__, __LINE__);  }  // setup the direction  //  if (!ft_d.setDirection(FourierTransform::INVERSE)) {    return Error::handle(name(), L"computeIdftConvRealFloat",			 ERR, __FILE__, __LINE__);  }  // setup the resolution  //  if (!ft_d.setResolution(FourierTransform::AUTO)) {    return Error::handle(name(), L"computeIdftConvRealFloat",			 ERR, __FILE__, __LINE__);  }  // setup the input length (order of computeIdft)  //  if (!ft_d.setInputLength(order)) {    return Error::handle(name(), L"computeIdftConvRealFloat",			 ERR, __FILE__, __LINE__);  }  // setup the output length  //  if (!ft_d.setOutputLength(comp_num_coeffs)) {    return Error::handle(name(), L"computeIdftConvRealFloat",			 ERR, __FILE__, __LINE__);  }    // call compute method of fourier transform  //  if (!ft_d.compute(cepstrum_a, logspectrum_a)) {    return Error::handle(name(), L"computeIdftConvRealFloat",			 ERR, __FILE__, __LINE__);  }  // output debugging information  //  if (debug_level_d >= Integral::ALL) {    cepstrum_a.debug(L"cepstrum");  }    // exit gracefully  //  return true;}// method: computeIdftConvComplexFloat//// arguments://  VectorComplexFloat& cepstrum: (output) cepstral coefficients//  const VectorComplexFloat& logspectrum: (input) input log spectrum//// return: a boolean value indicating status//// this method implements a DFT-based computation on complex floats.//boolean Cepstrum::computeIdftConvComplexFloat(VectorComplexFloat& cepstrum_a,						 const VectorComplexFloat&						 logspectrum_a) {    // check the algorithm and implementation  //  if ((algorithm_d != IDFT) && (implementation_d != CONVENTIONAL)) {    return Error::handle(name(), L"computeIdftConvComplexFloat",			 ERR, __FILE__, __LINE__);  }  // declare local variable  //  long comp_num_coeffs = order_d + (long)1;  // compute the order  //  Long order;  order.max(comp_num_coeffs, logspectrum_a.length());    // setup the algorithm  //  if (!ft_d.setAlgorithm(FourierTransform::DFT)) {    return Error::handle(name(), L"computeIdftConvComplexFloat",			 ERR, __FILE__, __LINE__);  }    // setup the implementation  //  if (!ft_d.setImplementation(FourierTransform::CONVENTIONAL)) {    return Error::handle(name(), L"computeIdftConvComplexFloat",			 ERR, __FILE__, __LINE__);  }  // setup the direction  //  if (!ft_d.setDirection(FourierTransform::INVERSE)) {    return Error::handle(name(), L"computeIdftConvComplexFloat",			 ERR, __FILE__, __LINE__);  }  // setup the resolution  //  if (!ft_d.setResolution(FourierTransform::AUTO)) {    return Error::handle(name(), L"computeIdftConvComplexFloat",			 ERR, __FILE__, __LINE__);  }  // setup the input length (order of computeIdft)  //  if (!ft_d.setInputLength(order)) {    return Error::handle(name(), L"computeIdftConvComplexFloat",			 ERR, __FILE__, __LINE__);  }    // setup the output length  //  if (!ft_d.setOutputLength(comp_num_coeffs)) {    return Error::handle(name(), L"computeIdftConvComplexFloat",			 ERR, __FILE__, __LINE__);  }    // call compute method of fourier transform  //  if (!ft_d.compute(cepstrum_a, logspectrum_a)) {    return Error::handle(name(), L"computeIdftConvComplexFloat",			 ERR, __FILE__, __LINE__);  }    // output debugging information  //  if (debug_level_d >= Integral::ALL) {    cepstrum_a.debug(L"cepstrum");  }    // exit gracefully  //  return true;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -