📄 pred_02.cc
字号:
lpc.compute(pred_coef, input, AlgorithmData::SIGNAL); if (!pred_coef.almostEqual(res_pred_coef_burg)) { pred_coef.debug(L"pred_coef"); return Error::handle(name(), L"computeCor", ERR, __FILE__, __LINE__); } // case: algorithm = LATTICE, implementation = BURG, // input = zero SIGNAL vector // for (long i = 0; i < input.length(); i++) { input(i) = 0; } lpc.compute(pred_coef, input, AlgorithmData::SIGNAL); if (!pred_coef.almostEqual(result_01)) { pred_coef.debug(L"pred_coef"); return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } } // test COVARIANCE algorithm // { // use the following data as input: // // x(n) = 0 when n = 0, 1, 2, 3; // x(n) = 1*pow(0.99, n-4) - pow(0.99, 2(n-4)), when 4 <= n < 20; // x(n) = 0 when n = 20, 21, 22, 23 // input.setLength(24); float z = 1; for (long i = 4; i < 20; i++) { input(i) = 2 * z - z * z; z = 0.99 * z; } Covariance cov_01; MatrixFloat cov_matrix; float err_energy; VectorFloat res_pred_coef_cov; res_pred_coef_cov.assign(L"1.000000, -0.9666891, 0.0000935849, 0.000092812, 0.03525938"); // case: algorithm = COVARIANCE, implementation = CHOLESKY, // input = non-zero COVARIANCE matrix // cov_01.setOrder((long)4); cov_01.compute(cov_matrix, input); lpc.set(COVARIANCE, CHOLESKY, 4, -200); lpc.compute(pred_coef, err_energy, cov_matrix, AlgorithmData::COVARIANCE); if (!pred_coef.almostEqual(res_pred_coef_cov)) { pred_coef.debug(L"pred_coef"); return Error::handle(name(), L"computeCor", ERR, __FILE__, __LINE__); } // case: algorithm = COVARIANCE, implementation = CHOLESKY, // input = non-zero COVARIANCE matrix // cov_matrix.assign(5, 5, L"0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0"); lpc.compute(pred_coef, err_energy, cov_matrix, AlgorithmData::COVARIANCE); if (!pred_coef.almostEqual(result_01)) { pred_coef.debug(L"pred_coef"); return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } // case: algorithm = COVARIANCE, implementation = CHOLESKY, // input = singular COVARIANCE matrix // lpc.set(COVARIANCE, CHOLESKY, 2, -10); cov_matrix.assign(4, 4, L"0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 4, 3"); lpc.compute(pred_coef, err_energy, cov_matrix, AlgorithmData::COVARIANCE); VectorFloat result_02(L"1, 0, 0"); if (!pred_coef.almostEqual(result_02)) { pred_coef.debug(L"pred_coef"); return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } lpc.set(COVARIANCE, CHOLESKY, 12, -10); cov_matrix.assign(13, 13, L"0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5.27765e-05, 0, 0, 0, -4.53232e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5.27765e-05, 0, 0, 0, -4.53232e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5.27765e-05, 0, 0, 0, -4.53232e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5.27765e-05, 0, 0, 0, -4.53232e-05, 0, 0, 0, 0, 0, -4.53232e-05, 0, 0, 0, 9.1699e-05, 0, 0, 0, -4.53232e-05, 0, 0, 0, 0, 0, -4.53232e-05, 0, 0, 0, 9.1699e-05, 0, 0, 0, -4.53232e-05, 0, 0, 0, 0, 0, -4.53232e-05, 0, 0, 0, 9.1699e-05, 0, 0, 0, -4.53232e-05, 0, 0, 0, 0, 0, -4.53232e-05, 0, 0, 0, 9.1699e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4.53232e-05, 0, 0, 0, 9.1699e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4.53232e-05, 0, 0, 0, 9.1699e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4.53232e-05, 0, 0, 0, 9.1699e-05"); lpc.compute(pred_coef, err_energy, cov_matrix, AlgorithmData::COVARIANCE); VectorFloat result_03(L"1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0"); if (!pred_coef.almostEqual(result_03)) { pred_coef.debug(L"pred_coef"); return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } } // test AUTOCORRELATION algorithm // exchange from correlation coefficients // { // case: algorithm = AUTOCORRELATION, implementation = DURBIN, // input = non-zero CORRELATION vector // float err_energy; lpc.set(AUTOCORRELATION, DURBIN, 4, -200); input.assign(L"0.657422, 0.616563, 0.57561, 0.534578, 0.493479"); lpc.compute(pred_coef, err_energy, input, AlgorithmData::CORRELATION); VectorFloat res_pred_coef; res_pred_coef.assign(L"1.000000, -0.9666891, 0.00009353, 0.00009286241, 0.03525937"); Double err_enr(err_energy); if (level_a > Integral::BRIEF) { err_enr.debug(L"error energy"); } if (!pred_coef.almostEqual(res_pred_coef, .3)) { pred_coef.debug(L"pred_coef from autocorrelation"); res_pred_coef.debug(L"expected pred_coef from autocorrealtion"); return Error::handle(name(), L"computeFromAuto", ERR, __FILE__, __LINE__); } // case: algorithm = AUTOCORRELATION, implementation = DURBIN, // input = zero CORRELATION vector // input.assign(L"0, 0, 0, 0, 0"); lpc.compute(pred_coef, err_energy, input, AlgorithmData::CORRELATION); if (!pred_coef.almostEqual(result_01)) { pred_coef.debug(L"pred_coef"); return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } } // test reflection algorithm: // exchange from predictor and relection coefficients // { // case: algorithm = REFLECTION, implementation = STEPDOWN, // input = non-zero REFLECTION vector // VectorFloat refl_coef; lpc.set(REFLECTION, STEP_DOWN, 4, -200); refl_coef.assign(L"-0.9378492, 0.03325092, 0.03422026, 0.03525937"); lpc.compute(pred_coef, refl_coef, AlgorithmData::REFLECTION); VectorFloat res_pred_coef; res_pred_coef.assign(L"1.000000, -0.9666891, 0.00009353, 0.00009286241, 0.03525937"); if (!pred_coef.almostEqual(res_pred_coef)) { pred_coef.debug(L"pred_coef from reflection"); return Error::handle(name(), L"computeFromRefelction", ERR, __FILE__, __LINE__); } // case: algorithm = REFLECTION, implementation = STEPDOWN, // input = zero REFLECTION vector // refl_coef.assign(L"0, 0, 0, 0"); lpc.compute(pred_coef, refl_coef, AlgorithmData::REFLECTION); if (!pred_coef.almostEqual(result_01)) { pred_coef.debug(L"pred_coef"); return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } pred_coef.clear(); refl_coef.clear(); } // test LOG_AREA_RATIO algorithm // { // case: algorithm = AUTOCORRELATION, implementation = DURBIN, // input = non-zero LOG_AREA_RATIO vector // VectorFloat lar_input(L"3.43977, -0.0665264, -0.0684673, -0.070548"); lpc.set(LOG_AREA_RATIO, KELLY_LOCHBAUM, 4, -200); lpc.compute(pred_coef, lar_input, AlgorithmData::LOG_AREA_RATIO); VectorFloat res_pred_coef; res_pred_coef.assign(L"1.000000, -0.9666891, 0.00009353, 0.00009286241, 0.03525937"); if (!pred_coef.almostEqual(res_pred_coef, .3)) { pred_coef.debug(L"pred_coef from autocorrelation"); res_pred_coef.debug(L"expected pred_coef from autocorrealtion"); return Error::handle(name(), L"computeFromAuto", ERR, __FILE__, __LINE__); } // case: algorithm = LOG_AREA_RATIO, implementation = KELLY_LOCHBAUM, // input = zero LOG_AREA_RATIO vector // lar_input.assign(L"0, 0, 0, 0"); lpc.compute(pred_coef, lar_input, AlgorithmData::LOG_AREA_RATIO); if (!pred_coef.almostEqual(result_01)) { pred_coef.debug(L"pred_coef"); return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } } // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } // -------------------------------------------------------------------- // // 5. class-specific public methods // apply methods // // -------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing class-specific public methods: apply methods...\n"); Console::increaseIndention(); } Vector< CircularBuffer<AlgorithmData> > in; Vector<AlgorithmData> out; AlgorithmData data; // number of channels // long N = 2; in.setLength(N); out.setLength(N); float z = 1; input.setLength(24); for (long i = 4; i < 20; i++) { input(i) = 2 * z - z * z; z = 0.99 * z; } for (long i = 0; i < N; i++) { in(i).append(data); in(i)(0).makeVectorFloat(); in(i)(0).setCoefType(AlgorithmData::SIGNAL); } in(0)(0).getVectorFloat().assign(input); input.assign((float)0); in(1)(0).getVectorFloat().assign(input); // case: algorithm = LATTICE, implementation = BURG, // input = non-zero and zero SIGNAL at channel 0 and 1 // lpc.set(LATTICE, BURG, 4, -200); lpc.apply(out, in); VectorFloat res_pred_coef_burg(L"1.0000000, -0.9666889, 0.00009363125, 0.00009251215, 0.03525940"); if (!out(0).getVectorFloat().almostEqual(res_pred_coef_burg) || !out(1).getVectorFloat().almostEqual(result_01)) { out(0).getVectorFloat().debug(L"result1"); out(1).getVectorFloat().debug(L"result2"); res_pred_coef_burg.debug(L"pred_coef"); result_01.debug(L"result_zeros"); return Error::handle(name(), L"computeCor", ERR, __FILE__, __LINE__); } // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } //--------------------------------------------------------------------------- // // 6. print completion message // //--------------------------------------------------------------------------- // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } if (level_a > Integral::NONE) { SysString output(L"diagnostics passed for class "); output.concat(name()); output.concat(L"\n"); Console::put(output); } // exit gracefully // return true;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -