📄 pred_02.cc
字号:
// file: $isip/class/algo/Prediction/pred_02.cc// version: $Id: pred_02.cc,v 1.12 2002/03/05 20:15:10 zheng Exp $//// isip include files//#include <Console.h>#include "Prediction.h"#include "LogAreaRatio.h"// method: diagnose//// arguments:// Integral::DEBUG level: (input) debug level for diagnostics//// return: a boolean value indicating status//boolean Prediction::diagnose(Integral::DEBUG level_a) { //--------------------------------------------------------------------------- // // 0. preliminaries // //--------------------------------------------------------------------------- // output the class name // if (level_a > Integral::NONE) { SysString output(L"diagnosing class "); output.concat(CLASS_NAME); output.concat(L": "); Console::put(output); Console::increaseIndention(); } // don't exit // Error::reset(); Error::set(Error::NONE); //-------------------------------------------------------------------------- // // 1. required public methods // //-------------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing required public methods...\n"); Console::increaseIndention(); } // test memory manager methods // Prediction lp; Prediction::setGrowSize((long)500); Prediction* lpp = new Prediction(); for (long j = 1; j <= 100; j++) { Prediction** lp1 = new Prediction*[j * 100]; // create the objects // for (long i = 0; i < j * 100; i++) { lp1[i] = new Prediction(); } // delete objects // for (long i = (j * 100) - 1; i >= 0; i--) { delete lp1[i]; } delete [] lp1; } delete lpp; // test i/o methods // Prediction lp0; Prediction lp1; Prediction lp2; lp0.set(COVARIANCE, CHOLESKY, 20, -30); // we need binary and text sof files // String tmp_filename0; Integral::makeTemp(tmp_filename0); String tmp_filename1; Integral::makeTemp(tmp_filename1); // open files in write mode // Sof tmp_file0; tmp_file0.open(tmp_filename0, File::WRITE_ONLY, File::TEXT); Sof tmp_file1; tmp_file1.open(tmp_filename1, File::WRITE_ONLY, File::BINARY); lp0.write(tmp_file0, (long)0); lp0.write(tmp_file1, (long)0); // close the files // tmp_file0.close(); tmp_file1.close(); // open the files in read mode // tmp_file0.open(tmp_filename0); tmp_file1.open(tmp_filename1); // read the value back // if (!lp1.read(tmp_file0, (long)0) || (lp1.getOrder() != lp0.getOrder()) || (lp1.getDynRange() != lp0.getDynRange()) || (lp1.getAlgorithm() != lp0.getAlgorithm())) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } if (!lp2.read(tmp_file1, (long)0) || (lp2.getOrder() != lp0.getOrder()) || (lp2.getDynRange() != lp0.getDynRange()) || (lp2.getAlgorithm() != lp0.getAlgorithm())) { return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__); } // close and delete the temporary files // tmp_file0.close(); tmp_file1.close(); File::remove(tmp_filename0); File::remove(tmp_filename1); // test the conditional i/o methods // Prediction lp_0; lp_0.setOrder(20); Sof tmp_file2; String tmp_filename2; Integral::makeTemp(tmp_filename2); tmp_file2.open(tmp_filename2, File::WRITE_ONLY); lp_0.write(tmp_file2, (long)5); // close the file // tmp_file2.close(); // open the file in read mode // tmp_file2.open(tmp_filename2); lp_0.read(tmp_file2, (long)5); if (lp_0.getOrder() != (long)20) { lp_0.debug(L"lp_0"); return Error::handle(name(), L"readData", Error::TEST, __FILE__, __LINE__); } lp_0.read(tmp_file2, (long)1); // close and delete the temporary files // tmp_file2.close(); File::remove(tmp_filename2); if (level_a > Integral::BRIEF) { Console::close(); File::remove(tmp_filename0); Console::put(L"closed and removed temp console"); } // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } //--------------------------------------------------------------------------- // // 3. class-specific public methods: // set and get methods // //--------------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing class-specific public methods: get and set methods...\n"); Console::increaseIndention(); } // set and get the order // Prediction lpc_1; lpc_1.setOrder((long)4); if (lpc_1.getOrder() != 4) { return Error::handle(name(), L"set/get order", Error::TEST, __FILE__, __LINE__); } // set and get the algorithm // lpc_1.setAlgorithm(AUTOCORRELATION); if (lpc_1.getAlgorithm() != AUTOCORRELATION) { return Error::handle(name(), L"set/get algorithm", Error::TEST, __FILE__, __LINE__); } // set and get the dynamic range // lpc_1.setDynRange((double)4.5); if (lpc_1.getDynRange() != 4.5) { return Error::handle(name(), L"set/get DynRange", Error::TEST, __FILE__, __LINE__); } // set and get the set // long ord; ALGORITHM alg; IMPLEMENTATION imp; float dyn; lpc_1.set(AUTOCORRELATION, DURBIN, 4, 4.5); lpc_1.get(alg, imp, ord, dyn); if ((ord != 4) || (alg != AUTOCORRELATION) || (dyn != 4.5)) { return Error::handle(name(), L"set/get set method", Error::TEST, __FILE__, __LINE__); } // reset indentation // if (level_a > Integral::NONE) { Console::decreaseIndention(); } //--------------------------------------------------------------------------- // // 4. class-specific public methods: // computational methods // //--------------------------------------------------------------------------- // set indentation // if (level_a > Integral::NONE) { Console::put(L"testing class-specific public methods: computational methods...\n"); Console::increaseIndention(); } // setup vairables for test // Prediction lpc; VectorFloat input; VectorFloat pred_coef; VectorFloat result_01(L"1, 0, 0, 0, 0"); // test LATTICE algorithm // { // use the following data as input: // // x(n) = 0 when n = 0, 1, 2, 3; // x(n) = 1*pow(0.99, n-4) - pow(0.99, 2(n-4)), when 4 <= n < 20; // x(n) = 0 when n = 20, 21, 22, 23 // input.setLength(24); float z = 1; for (long i = 4; i < 20; i++) { input(i) = 2 * z - z * z; z = 0.99 * z; } // expected prediction coefficients for the autocorrelation, // covariance and burg analysis // VectorFloat res_pred_coef_autoc; VectorFloat res_pred_coef_burg; res_pred_coef_autoc.assign(L"1.000000, -0.9666891, 0.00009353, 0.00009286241, 0.03525937"); res_pred_coef_burg.assign(L"1.0000000, -0.9666889, 0.00009363125, 0.00009251215, 0.03525940"); // case: algorithm = LATTICE, implementation = BURG, // input = non-zero SIGNAL vector // lpc.set(LATTICE, BURG, 4, -200);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -