⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lar_02.cc

📁 这是一个从音频信号里提取特征参量的程序
💻 CC
字号:
// file: $isip/class/algo/LogAreaRatio/lar_02.cc// version: $Id: lar_02.cc,v 1.5 2002/02/06 03:16:39 zheng Exp $//// isip include files//#include "LogAreaRatio.h"#include <Console.h>// method: diagnose//// arguments://  Integral::DEBUG level: (input) debug level for diagnostics//// return: a boolean value indicating status//boolean LogAreaRatio::diagnose(Integral::DEBUG level_a) {  //---------------------------------------------------------------------  //  // 0. preliminaries  //  //---------------------------------------------------------------------  // output the class name  //  if (level_a > Integral::NONE) {    String output(L"diagnosing class ");    output.concat(CLASS_NAME);    output.concat(L": ");    Console::put(output);    Console::increaseIndention();  }   //--------------------------------------------------------------------  //  // 1. required public methods  //  //--------------------------------------------------------------------  // set indentation  //  if (level_a > Integral::NONE) {    Console::put(L"testing required public methods...\n");    Console::increaseIndention();  }  // test destructor/constructor(s) and memory management  //  LogAreaRatio lar0;  LogAreaRatio lar1(lar0);  LogAreaRatio lar2;    if (!lar1.eq(lar0)) {    return Error::handle(name(), L"copy constructor", Error::TEST,			 __FILE__, __LINE__);  }    if (!lar2.eq(lar0)) {    return Error::handle(name(), L"copy constructor", Error::TEST,			 __FILE__, __LINE__);  }  // test large allocation construction and deletion  //  if (level_a == Integral::ALL) {        Console::put(L"\ntesting large chunk memory allocation and deletion:\n");        // set the memory to a strange block size so we can hopefully catch any    // frame overrun errors    //    LogAreaRatio::setGrowSize((long)500);        LogAreaRatio* pft = new LogAreaRatio();    for (long j = 1; j <= 100; j++) {      LogAreaRatio** pfts = new LogAreaRatio*[j * 100];            // create the objects      //      for (long i = 0; i < j * 100; i++) {	pfts[i] = new LogAreaRatio();      }            // delete objects      //      for (long i = (j * 100) - 1; i >= 0; i--) {	delete pfts[i];      }            delete [] pfts;    }        delete pft;  }  // test the i/o methods  //  LogAreaRatio lar3;  LogAreaRatio lar4;  LogAreaRatio lar5;    // we need binary and text sof files  //  String tmp_filename0;  Integral::makeTemp(tmp_filename0);  String tmp_filename1;  Integral::makeTemp(tmp_filename1);  // open files in write mode  //  Sof tmp_file0;  tmp_file0.open(tmp_filename0, File::WRITE_ONLY, File::TEXT);  Sof tmp_file1;  tmp_file1.open(tmp_filename1, File::WRITE_ONLY, File::BINARY);  lar3.write(tmp_file0, (long)0);  lar3.write(tmp_file1, (long)0);  // close the files  //  tmp_file0.close();  tmp_file1.close();  // open the files in read mode  //  tmp_file0.open(tmp_filename0);  tmp_file1.open(tmp_filename1);  // read the value back  //  lar4.read(tmp_file0, (long)0);  if (!lar4.eq(lar3)) {    return Error::handle(name(), L"read", Error::TEST, __FILE__, __LINE__);  }  if (!lar4.eq(lar3)) {    return Error::handle(name(), L"read", Error::TEST, __FILE__, __LINE__);  }  // close and  delete the temporary files  //  tmp_file0.close();  tmp_file1.close();    File::remove(tmp_filename0);  File::remove(tmp_filename1);  // reset indentation  //  if (level_a > Integral::NONE) {    Console::decreaseIndention();  }    //--------------------------------------------------------------------------  //  // 2. class-specific public methods:  //     computational methods  //  //--------------------------------------------------------------------------  // set indentation  //  if (level_a > Integral::NONE) {    Console::put(L"testing class-specific public methods: computational methods...\n");    Console::increaseIndention();  }  // declare local variables  //  LogAreaRatio lar;  VectorFloat vec_in(L"-0.9378492, 0.03325092, 0.03422026, 0.03525937");  VectorFloat vec_out, result;  // case: Algorithm = LATTICE, Implementation = KELLY_LOCHBAUM,  //       Input = non-zero REFLECTION vector  //  {      // compute log-area-ratio from reflection coefficients    //    lar.compute(vec_out, vec_in, AlgorithmData::REFLECTION);        result.assign(L"3.43977, -0.0665264, -0.0684673, -0.070548");    if (!vec_out.almostEqual(result)) {      vec_out.debug(L"Computed output");      result.debug(L"Correct output");      return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__);    }  }    // case: Algorithm = LATTICE, Implementation = KELLY_LOCHBAUM,  //       Input = zero REFLECTION vector  //  {    // compute log-area-ratio from reflection coefficients, for all zeros    //    vec_in.assign(L"0.0, 0.0, 0.0, 0.0");    lar.compute(vec_out, vec_in, AlgorithmData::REFLECTION);        result.assign(L"0.0, 0.0, 0.0, 0.0");      if (!vec_out.almostEqual(result)) {      vec_out.debug(L"Computed output");      result.debug(L"Correct output");      return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__);    }  }    // case: Algorithm = LATTICE, Implementation = KELLY_LOCHBAUM,  //       Input = constant REFLECTION vector  //  {     // compute log-area-ratio from reflection coefficients, for all constants    //    vec_in.assign(L"0.5, 0.5, 0.5, 0.5");    lar.compute(vec_out, vec_in, AlgorithmData::REFLECTION);        result.assign(L"-1.09861, -1.09861, -1.09861, -1.09861");        if (!vec_out.almostEqual(result)) {      vec_out.debug(L"Computed output");    result.debug(L"Correct output");    return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__);    }  }  // case: Algorithm = LATTICE, Implementation = KELLY_LOCHBAUM,  //       Input = non-zero PREDICTION vector  //  {      // compute log-area-ratio from reflection coefficients    //    vec_in.assign(L"1.000000, -0.9666891, 0.00009353, 0.00009286241, 0.03525937");    lar.compute(vec_out, vec_in, AlgorithmData::PREDICTION);        result.assign(L"3.43977, -0.0665264, -0.0684673, -0.070548");    if (!vec_out.almostEqual(result)) {      vec_out.debug(L"Computed output");      result.debug(L"Correct output");      return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__);    }  }  // case: Algorithm = LATTICE, Implementation = KELLY_LOCHBAUM,  //       Input = zero PREDICTION vector  //  {    // compute log-area-ratio from reflection coefficients, for all zeros    //    vec_in.assign(L"0.0, 0.0, 0.0, 0.0, 0.0");    lar.compute(vec_out, vec_in, AlgorithmData::PREDICTION);        result.assign(L"0.0, 0.0, 0.0, 0.0");      if (!vec_out.almostEqual(result)) {      vec_out.debug(L"Computed output");      result.debug(L"Correct output");      return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__);    }  }    // reset indentation  //  if (level_a > Integral::NONE) {    Console::decreaseIndention();  }    // --------------------------------------------------------------------  //  // 5. class-specific public methods  //     apply methods  //  // --------------------------------------------------------------------  // set indentation  //  if (level_a > Integral::NONE) {    Console::put(L"testing class-specific public methods: apply methods...\n");    Console::increaseIndention();  }  // local variables  //  Vector< CircularBuffer<AlgorithmData> > in;  Vector<AlgorithmData> out;  AlgorithmData data;  // number of channels  //  long N = 2;    in.setLength(N);  out.setLength(N);    for (long i = 0; i < N; i++) {    in(i).append(data);    in(i)(0).makeVectorFloat();    in(i)(0).setCoefType(AlgorithmData::REFLECTION);  }  in(0)(0).getVectorFloat().assign(L"-0.9378492, 0.03325092, 0.03422026, 0.03525937");  in(1)(0).getVectorFloat().assign(L"0.0, 0.0, 0.0, 0.0");    // case: Algorithm = LATTICE, Implementation = KELLY_LOCHBAUM,  //       Input = non-zero and zero REFLECTION vector at channel 0 and 1  //  {      // compute log-area-ratio from reflection coefficients    //    lar.apply(out, in);    result.assign(L"3.43977, -0.0665264, -0.0684673, -0.070548");    if (!out(0).getVectorFloat().almostEqual(result)) {      out(0).getVectorFloat().debug(L"output(0)");      result.debug(L"Correct output");      return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__);    }    result.assign(L"0.0, 0.0, 0.0, 0.0");    if (!out(1).getVectorFloat().almostEqual(result)) {      out(1).getVectorFloat().debug(L"output(1)");      result.debug(L"Correct output");      return Error::handle(name(), L"diagnose", Error::TEST, __FILE__, __LINE__);    }  }  // reset indentation  //  if (level_a > Integral::NONE) {    Console::decreaseIndention();  }    // --------------------------------------------------------------------  //  // 3. print completion message  //  // --------------------------------------------------------------------  // reset indentation  //  if (level_a > Integral::NONE) {    Console::decreaseIndention();  }    if (level_a > Integral::NONE) {    String output(L"diagnostics passed for class ");    output.concat(name());    output.concat(L"\n");    Console::put(output);  }    // exit gracefully  //  return true;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -