⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 statisticalmodel.h

📁 这是一个从音频信号里提取特征参量的程序
💻 H
字号:
// file: $isip/class/stat/StatisticalModel/StatisticalModel.h// version: $Id: StatisticalModel.h,v 1.29 2002/10/26 19:45:52 jelinek Exp $//// make sure definitions are only made once//#ifndef ISIP_STATISTICAL_MODEL#define ISIP_STATISTICAL_MODEL// isip include files//#ifndef ISIP_STATISTICAL_MODEL_BASE#include <StatisticalModelBase.h>#endif#ifndef ISIP_STATISTICAL_MODEL_UNDEFINED#include <StatisticalModelUndefined.h>#endif// forward class definitions//class VectorDouble;class MatrixFloat;class NameMap;class MixtureModel;class GaussianModel;class UniformModel;// StatisticalModel: a class whose chief goal is to evaluate the likelihood// of an input vector with respect to a statistical model. this class provides// a virtual interface to any class that implements the StatisticalModelBase// interface contract.//class StatisticalModel : public StatisticalModelBase {  //---------------------------------------------------------------------------  //  // public constants  //  //---------------------------------------------------------------------------public:  // define the class name  //  static const String CLASS_NAME;  //----------------------------------------  //  // other important constants  //  //----------------------------------------    // define the currently available model types  //  enum TYPE { UNKNOWN = 0, GAUSSIAN_MODEL, MIXTURE_MODEL, UNIFORM_MODEL,	      SUPPORT_VECTOR_MODEL, DEF_TYPE = UNKNOWN };  // define the implementation choices  //  enum ALGORITHM {MIXTURE_SPLITTING = 0,		  DEF_ALGORITHM = MIXTURE_SPLITTING};    // define the implementation choices  //  enum IMPLEMENTATION {VARIANCE_SPLITTING = 0,		       DEF_IMPLEMENTATION = VARIANCE_SPLITTING};        // a static name map  //  static const NameMap TYPE_MAP;  //----------------------------------------  //  // i/o related constants  //  //----------------------------------------      static const String PARAM_TYPE;  static const String DEF_PARAM;    //----------------------------------------  //  // default values and arguments  //  //----------------------------------------    // define the default value(s) of the class data  //  static const StatisticalModelUndefined NO_STAT_MODEL;  // define the perturb factor for splitting the models  //  static const float DEF_PERTURB_FACTOR = 0.2;    //----------------------------------------  //  // error codes  //  //----------------------------------------    static const long ERR = 60300;    //---------------------------------------------------------------------------  //  // protected data  //  //---------------------------------------------------------------------------protected:  // algorithm name  //  ALGORITHM algorithm_d;    // implementation name  //  IMPLEMENTATION implementation_d;    // a virtual pointer to a statistical model  //  StatisticalModelBase* virtual_model_d;  // memory manager  //  static MemoryManager mgr_d;    //---------------------------------------------------------------------------  //  // required public methods  //  //---------------------------------------------------------------------------public:  // method: name  //  static const String& name() {    return CLASS_NAME;  }  // other static methods  //  static boolean diagnose(Integral::DEBUG debug_level);    // method: debug  //  setDebug is inherited from base class  //  boolean debug(const unichar* message) const {    return virtual_model_d->debug(message);  }  // method: destructor  //  ~StatisticalModel() {    if (virtual_model_d != (StatisticalModelBase*)&NO_STAT_MODEL) {      delete virtual_model_d;    }  }  // method: default constructor  //  StatisticalModel(TYPE type = DEF_TYPE) {    algorithm_d = DEF_ALGORITHM;        implementation_d = DEF_IMPLEMENTATION;    virtual_model_d = (StatisticalModelBase*)&NO_STAT_MODEL;    setType(type);  }  // method: copy constructor  //  StatisticalModel(const StatisticalModel& arg) {    virtual_model_d = (StatisticalModelBase*)&NO_STAT_MODEL;    assign(arg);  }  // method: assign  //  boolean assign(const StatisticalModel& arg) {    algorithm_d = arg.algorithm_d;        implementation_d = arg.implementation_d;    return assign(*arg.virtual_model_d);  }  // method: operator=  //  StatisticalModel& operator=(const StatisticalModel& arg) {    assign(arg);    return *this;  }    // method: eq  //  boolean eq(const StatisticalModel& arg) const {    return virtual_model_d->eq(*arg.virtual_model_d);  }  // method: sofSize  //  long sofSize() const {    return (TYPE_MAP.elementSofSize() + virtual_model_d->sofSize());  }  // method: sofAccumulatorSize  //  long sofAccumulatorSize() const {    return (TYPE_MAP.elementSofSize() + virtual_model_d->sofAccumulatorSize());  }  // method: sofOccupanciesSize  //  long sofOccupanciesSize() const {    return (TYPE_MAP.elementSofSize() + virtual_model_d->sofOccupanciesSize());  }      // other i/o methods  //  boolean read(Sof& sof, long tag, const String& name = CLASS_NAME);  boolean write(Sof& sof, long tag, const String& name = CLASS_NAME) const;  boolean readData(Sof& sof, const String& pname = DEF_PARAM,		   long size = SofParser::FULL_OBJECT,		   boolean param = true, boolean nested = false);  boolean writeData(Sof& sof, const String& pname = DEF_PARAM) const;    boolean readAccumulator(Sof& sof, long tag,		    const String& name = CLASS_NAME);  boolean writeAccumulator(Sof& sof, long tag,		     const String& name = CLASS_NAME) const;  boolean readAccumulatorData(Sof& sof, const String& pname = DEF_PARAM,		   long size = SofParser::FULL_OBJECT,		   boolean param = true, boolean nested = false);  boolean writeAccumulatorData(Sof& sof, const String& pname = DEF_PARAM) const;      boolean readOccupancies(Sof& sof, long tag,			  const String& name = CLASS_NAME);  boolean writeOccupancies(Sof& sof, long tag,			   const String& name = CLASS_NAME) const;    boolean readOccupanciesData(Sof& sof, const String& pname = DEF_PARAM,			      long size = SofParser::FULL_OBJECT,			      boolean param = true, boolean nested = false);  boolean writeOccupanciesData(Sof& sof, const String& pname = DEF_PARAM) const;     // method: operator new  //  static void* operator new(size_t size) {    return mgr_d.get();  }  // method: operator new[]  //  static void* operator new[](size_t size) {    return mgr_d.getBlock(size);  }  // method: operator delete  //  static void operator delete(void* ptr) {    mgr_d.release(ptr);  }  // method: operator delete[]  //  static void operator delete[](void* ptr) {    mgr_d.releaseBlock(ptr);  }  // method: setGrowSize  //  static boolean setGrowSize(long size) {    return mgr_d.setGrow(size);  }  // other memory-management methods  //  boolean clear(Integral::CMODE cmode = Integral::DEF_CMODE);  //---------------------------------------------------------------------------  //  // class-specific public methods:  //  methods needed for training models  //  //---------------------------------------------------------------------------  // method: resetAccumulators  //  boolean resetAccumulators() {    return virtual_model_d->resetAccumulators();  }    // method: getOccupancy  //  double getOccupancy() {    return virtual_model_d->getOccupancy();  }  // method: setOccupancy  //  boolean setOccupancy(double arg) {    return virtual_model_d->setOccupancy(arg);  }    // method: getAccessCount  //  long getAccessCount() {    return virtual_model_d->getAccessCount();  }  // method: setAccessCount  //  boolean setAccessCount(long arg) {    return virtual_model_d->setAccessCount(arg);  }  // method: initialize  //  boolean initialize(VectorFloat& param) {    return virtual_model_d->initialize(param);  }    // method: accumulate  //  boolean accumulate(VectorFloat& data) {    return virtual_model_d->accumulate(data);  }    // method: accumulate  //  boolean accumulate(VectorDouble& param,		     VectorFloat& data, boolean precomp) {    return virtual_model_d->accumulate(param, data, precomp);  }  // method: update  //    boolean update(VectorFloat& varfloor, long min_count) {    return virtual_model_d->update(varfloor, min_count);  }  // method: addModelToMixture  //  static boolean addModelToMixture(StatisticalModel& model_a,				   StatisticalModel& mixture_a);  // method: splitMixtureModel  //    boolean splitMixtureModel(long arg);      //---------------------------------------------------------------------------  //  // class-specific public methods:  //  additional methods needed to facilitate base class manipulations  //  //---------------------------------------------------------------------------  // method: getAlgorithm  //  ALGORITHM getAlgorithm() {    return algorithm_d;  }  // method: getImplementation  //  IMPLEMENTATION setImplementation() {    return implementation_d;  }    // method: setAlgorithm  //  boolean setAlgorithm(ALGORITHM algorithm) {    algorithm_d = algorithm;    return true;  }  // method: setImplementation  //  boolean setImplementation(IMPLEMENTATION implementation) {    implementation_d = implementation;    return true;    }    // configuration methods  //  boolean setType(TYPE type);  // method: getType  //  TYPE getType() const {    return (TYPE)TYPE_MAP(virtual_model_d->className());  }  //---------------------------------------------------------------------------  //  // class-specific public methods:  //  these functions interface to the base class interface contract.  //  //---------------------------------------------------------------------------  // method: constructor  //  StatisticalModel(const StatisticalModelBase& arg) {    algorithm_d = DEF_ALGORITHM;        implementation_d = DEF_IMPLEMENTATION;    virtual_model_d = (StatisticalModelBase*)&NO_STAT_MODEL;        assign(arg);  }    // StatisticalModelBase required methods  //  boolean assign(const StatisticalModelBase& arg);  // method: eq  //  boolean eq(const StatisticalModelBase& arg) const {    return virtual_model_d->eq(arg);  }    // method: setMode  //  boolean setMode(MODE mode) {    return virtual_model_d->setMode(mode);  }  // method: getMode  //  MODE getMode() const {    return virtual_model_d->getMode();  }			   // method: className  //  const String& className() const {    return virtual_model_d->className();  }  // method: init  //  boolean init() {    return virtual_model_d->init();  }  // method: getMean  //  boolean getMean(VectorFloat& mean) {    return virtual_model_d->getMean(mean);  }    // method: getCovariance  //  boolean getCovariance(MatrixFloat& cov) {    return virtual_model_d->getCovariance(cov);  }    // method: getLikelihood  //  float getLikelihood(const VectorFloat& input) {    return virtual_model_d->getLikelihood(input);  }  // method: getLogLikelihood  //  float getLogLikelihood(const VectorFloat& input) {    return virtual_model_d->getLogLikelihood(input);  }  // method: getMixtureModel  //  MixtureModel& getMixtureModel() {    return *((MixtureModel*)virtual_model_d);  }    // method: getGaussianModel  //  GaussianModel& getGaussianModel() {    return *((GaussianModel*)virtual_model_d);  }    // method: getUniformModel  //  UniformModel& getUniformModel() {    return *((UniformModel*)virtual_model_d);  }    //---------------------------------------------------------------------------  //  // private methods  //  //---------------------------------------------------------------------------private:};// end of include file// #endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -