⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gaussianmodel.h

📁 这是一个从音频信号里提取特征参量的程序
💻 H
字号:
// file: $isip/class/stat/GaussianModel/GaussianModel.h// version: $Id: GaussianModel.h,v 1.28 2003/01/11 15:51:19 jelinek Exp $//// make sure definitions are only made once//#ifndef ISIP_GAUSSIAN_MODEL#define ISIP_GAUSSIAN_MODEL// isip include files//#ifndef ISIP_VECTOR#include <Vector.h>#endif#ifndef ISIP_VECTOR_FLOAT#include <VectorFloat.h>#endif#ifndef ISIP_VECTOR_DOUBLE#include <VectorDouble.h>#endif#ifndef ISIP_MATRIX_FLOAT#include <MatrixFloat.h>#endif#ifndef ISIP_MATRIX_DOUBLE#include <MatrixDouble.h>#endif#ifndef ISIP_MEMORY_MANAGER#include <MemoryManager.h>#endif#ifndef ISIP_STATISTICAL_MODEL_BASE#include <StatisticalModelBase.h>#endif// GaussianModel: a class to score test vectors according to a// multi-dimensional Gaussian distribution:////             1 //  -------------------------  * exp (-1/2 * [(x-u)' * inverse(Cov) * (x-u)])//   sqrt( (2*pi)^N * |Cov| )////  'N' is the dimension of the probability space//  'x' is the input vector//  'u' is the mean of the distribution//  'Cov' is the covariance of the distribution//class GaussianModel : public StatisticalModelBase {  //---------------------------------------------------------------------------  //  // public constants  //  //---------------------------------------------------------------------------public:  // define the class name  //  static const String CLASS_NAME;    //----------------------------------------  //  // i/o related constants  //  //----------------------------------------      static const String DEF_PARAM;  static const String PARAM_MEAN;  static const String PARAM_COVARIANCE;  static const String PARAM_MEAN_ACCUM;      static const String PARAM_COVARIANCE_ACCUM;  static const String PARAM_OCCUPANCY_ACCUM;  static const String PARAM_ACCESS_ACCUM;    //----------------------------------------  //  // default values and arguments  //  //----------------------------------------    // define the default value(s) of the class data  //  static const float DEF_SCALE_FACTOR = 0.0;    //----------------------------------------  //  // error codes  //  //----------------------------------------    static const long ERR = 60100;      //---------------------------------------------------------------------------  //  // protected data  //  //---------------------------------------------------------------------------protected:  // accumulator used in training  //  Double occ_accum_d;  Long access_accum_d;    VectorDouble mean_accum_d;    MatrixDouble covar_accum_d;    // mean vector and covariance matrix  //  VectorFloat mean_d;  MatrixFloat covariance_d;  MatrixFloat orig_covar_d;      // scale factor  //  double scale_d;    // static deviation vector to store (input_observation - mean_d)  // when in pre-compute mode  //  static VectorFloat deviation_d;  // memory manager  //  static MemoryManager mgr_d;    //---------------------------------------------------------------------------  //  // required public methods  //  //---------------------------------------------------------------------------public:  // method: name  //  static const String& name() {    return CLASS_NAME;  }  // other static methods  //  static boolean diagnose(Integral::DEBUG debug_level);  // debug methods  //  setDebug is inherited from base class  //  boolean debug(const unichar* msg) const;    // method: destructor  //  ~GaussianModel() {}  // method: default constructor  //  GaussianModel(MODE mode = DEF_MODE) {    mode_d = mode;    occ_accum_d = 0.0;    access_accum_d = 0;        mean_accum_d.assign(0.0);    covar_accum_d.assign(0.0);    scale_d = DEF_SCALE_FACTOR;    is_valid_d = false;  }  // method: copy constructor  //  GaussianModel(const GaussianModel& arg) {    assign(arg);  }  // assign methods  //  boolean assign(const GaussianModel& arg);  // method: operator=  //  GaussianModel& operator=(const GaussianModel& arg) {    assign(arg);    return *this;  }    // method: sofSize  //  long sofSize() const {    return (mean_d.sofSize() + covariance_d.sofSize());  }  // method: sofAccumulatorSize  //  long sofAccumulatorSize() const {    return (occ_accum_d.sofSize() + access_accum_d.sofSize() + mean_accum_d.sofSize() + covar_accum_d.sofSize());  }  // method: sofOccupanciesSize  //  long sofOccupanciesSize() const {    return occ_accum_d.sofSize();  }      // other i/o methods  //  boolean read(Sof& sof, long tag, const String& name = CLASS_NAME);  boolean write(Sof& sof, long tag, const String& name = CLASS_NAME) const;  boolean readData(Sof& sof, const String& pname = DEF_PARAM,                   long size = SofParser::FULL_OBJECT,                   boolean param = true,                   boolean nested = false);  boolean writeData(Sof& sof, const String& pname = DEF_PARAM) const;  boolean readAccumulator(Sof& sof, long tag,		    const String& name = CLASS_NAME);    boolean writeAccumulator(Sof& sof, long tag,		     const String& name = CLASS_NAME) const;    boolean readAccumulatorData(Sof& sof, const String& pname = DEF_PARAM,			long size = SofParser::FULL_OBJECT,			boolean param = true,			boolean nested = false);    boolean writeAccumulatorData(Sof& sof,			 const String& pname = DEF_PARAM) const;  boolean readOccupancies(Sof& sof, long tag,			  const String& name = CLASS_NAME);    boolean writeOccupancies(Sof& sof, long tag,		     const String& name = CLASS_NAME) const;    boolean readOccupanciesData(Sof& sof, const String& pname = DEF_PARAM,			      long size = SofParser::FULL_OBJECT,			      boolean param = true,			      boolean nested = false);    boolean writeOccupanciesData(Sof& sof,			 const String& pname = DEF_PARAM) const;    // equality methods  //  boolean eq(const GaussianModel& arg) const;  // method: operator new  //  static void* operator new(size_t size) {    return mgr_d.get();  }  // method: operator new[]  //  static void* operator new[](size_t size) {    return mgr_d.getBlock(size);  }  // method: operator delete  //  static void operator delete(void* ptr) {    mgr_d.release(ptr);  }  // method: operator delete[]  //  static void operator delete[](void* ptr) {    mgr_d.releaseBlock(ptr);  }  // method: setGrowSize  //  static boolean setGrowSize(long grow_size) {    return mgr_d.setGrow(grow_size);  }  // method: clear  //  boolean clear(Integral::CMODE cmode = Integral::DEF_CMODE) {    mean_d.clear(cmode);    covariance_d.clear(cmode);    orig_covar_d.clear(cmode);        is_valid_d = false;    return true;  }    //---------------------------------------------------------------------------  //  // class-specific public methods:  //  additional methods unique to this class needed to support the  //  interface contract  //  //--------------------------------------------------------------------------  // method: constructor  //  GaussianModel(VectorFloat mean, MatrixFloat cov, MODE mode = DEF_MODE) {    mean_d.assign(mean);    covariance_d.assign(cov);    orig_covar_d.assign(cov);            scale_d = 0;    mode_d = mode;    is_valid_d = false;  }  // method: constructor  //  GaussianModel(float mean, float variance, MODE mode = DEF_MODE) {    VectorFloat vmean(1, mean);    mean_d.assign(vmean);    covariance_d.setDimensions(1, 1, false, Integral::SYMMETRIC);    covariance_d.assign(variance);    orig_covar_d.setDimensions(1, 1, false, Integral::SYMMETRIC);    orig_covar_d.assign(variance);        scale_d = 0;    mode_d = mode;    is_valid_d = false;  }  // method: setMean  //  boolean setMean(const VectorFloat& mean) {    mean_d.assign(mean);    return true;  }  // method: setMean  //  boolean setMean(float mean) {    VectorFloat vmean(1, mean);    mean_d.assign(vmean);    return true;  }  // method: setCovariance  //  boolean setCovariance(const MatrixFloat& cov) {    covariance_d.assign(cov);    orig_covar_d.assign(cov);    is_valid_d = false;    return true;  }  // method: setCovariance  //  boolean setCovariance(float cov) {    covariance_d.setDimensions(1, 1, false, Integral::SYMMETRIC);    covariance_d.assign(cov);    orig_covar_d.setDimensions(1, 1, false, Integral::SYMMETRIC);    orig_covar_d.assign(cov);        is_valid_d = false;    return true;  }  // method: getMean  //  boolean getMean(VectorFloat& mean) {    return mean.assign(mean_d);  }  // method: getMeanAccumulator  //  boolean getMeanAccumulator(VectorDouble& mean_accum) {    mean_accum.assign(mean_accum_d);    return true;  }    // method: getCovariance  //  boolean getCovariance(MatrixFloat& cov) {        // if we are not in the precompute mode, return the covariance    // matrix    //    if (mode_d != PRECOMPUTE) {      return cov.assign(covariance_d);    }        // else return the original covariance matrix    //    else      return cov.assign(orig_covar_d);  }  //---------------------------------------------------------------------------  //  // class-specific public methods:  //  required for the base class interface contract  //  //--------------------------------------------------------------------------  // StatisticalModelBase required methods  //  boolean assign(const StatisticalModelBase& arg);  boolean eq(const StatisticalModelBase& arg) const;  // set methods  //  boolean setMode(MODE arg);  // method: className  //  const String& className() const {    return CLASS_NAME;  }  // initialization methods  //  boolean init();  // method: getLikelihood  //  float getLikelihood(const VectorFloat& input) {    return Integral::exp(getLogLikelihood(input));  }  // computational methods  //  float getLogLikelihood(const VectorFloat& input);  //---------------------------------------------------------------------------  //  // class-specific public methods:  //  accumulate and update methods needed for training models  //  //---------------------------------------------------------------------------  // method: resetAccumulators  //  boolean resetAccumulators() {    access_accum_d = 0;    occ_accum_d = 0.0;    mean_accum_d.assign(0.0);    covar_accum_d.assign(0.0);    return true;  }  // method: getOccupancy  //  double getOccupancy() {    return occ_accum_d;  }  // method: setOccupancy  //  boolean setOccupancy(double arg) {    occ_accum_d = arg;    return true;  }    // method: getAccessCount  //  long getAccessCount() {    return access_accum_d;  }  // method: setAccessCount  //  boolean setAccessCount(long arg) {    access_accum_d = arg;    return true;  }      // method that accumulates the statistics for the model which are  // needed to update the model parameters during training  //  boolean accumulate(VectorDouble& param,		     VectorFloat& data, boolean precomp);  // method that updates the statistical model parameters using the  // accumulated statistics during training  //    boolean update(VectorFloat& varfloor, long min_count);  // methods that initializes the statistical model parameters using  // accumulated feature vectors  //  boolean accumulate(VectorFloat& data);      boolean initialize(VectorFloat& param);    // method that adapts mean parameters given the transformation matrix  //  boolean adapt(const Vector<VectorFloat>& transform);  //---------------------------------------------------------------------------  //  // private methods  //  //---------------------------------------------------------------------------private:};// end of include file// #endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -