⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lexicaltree.h

📁 这是一个从音频信号里提取特征参量的程序
💻 H
字号:
// file: $isip/class/search/LexicalTree/LexicalTree.h// version: $Id: LexicalTree.h,v 1.10 2002/12/05 21:42:54 alphonso Exp $//// make sure definitions are only made once//#ifndef ISIP_LEXICAL_TREE#define ISIP_LEXICAL_TREE#ifndef ISIP_DI_GRAPH#include <DiGraph.h>#endif#ifndef ISIP_SEARCH_NODE#include <SearchNode.h>#endif// LexicalTree: A class implement a lexical tree using Digraph data structure// class LexicalTree : public DiGraph<SearchNode> {  //---------------------------------------------------------------------------  //  // public constants  //  //---------------------------------------------------------------------------public:  // define the class name  //  static const String CLASS_NAME;  //----------------------------------------  //  // i/o related constants  //  //----------------------------------------    static const String DEF_PARAM;  //----------------------------------------  //  // other important constants  //  //----------------------------------------    // define algorithm choices  //  enum ALGORITHM { UNFACTORED = 0, DI_GRAPH, NGRAM, NGRAM_CACHED,		   DEF_ALGORITHM = UNFACTORED};  // define implementation choices  //  enum IMPLEMENTATION { ALWAYS_MAX=0, UPPER_BOUND, SUM, 			DEF_IMPLEMENTATION = ALWAYS_MAX };  //----------------------------------------  //  // default values and arguments  //  //----------------------------------------      //---------------------------------------  //  // error codes  //  //---------------------------------------    static const long ERR = (long)90600;    //---------------------------------------------------------------------------  //  // protected data  //  //---------------------------------------------------------------------------protected:  // type definition  //   typedef SearchNode LexicalNode;    // type definition  //   typedef SearchSymbol LexSymbol;    // type definition  //   typedef GraphVertex<LexicalNode> GVLexicalNode;    // type definition  //   typedef DiGraph<LexicalNode> Pronunciation;    // type definition  //   typedef GraphArc<LexicalNode> GALexicalNode;    // define a static debug level  //  static Integral::DEBUG debug_level_d;    // define a static memory manager  //  static MemoryManager mgr_d;  //---------------------------------------------------------------------------  //  // private data  //  //---------------------------------------------------------------------------private:  // If we put the codes on spreading ngrams in the search process,  // these definitions can be removed in the future.   //     // algorithm name  //  ALGORITHM algorithm_d;  // implementation type  //  IMPLEMENTATION implementation_d;  // the start node of the LexicalTree  //    GVLexicalNode* root_vert_d;  // the weight to term  //  float term_weight_d;    //---------------------------------------------------------------------------  //  // required public methods  //  //---------------------------------------------------------------------------public:  // method: name  //  static const String& name() {    return CLASS_NAME;  }  // method: diagnose  //  static boolean diagnose(Integral::DEBUG debug_level);  // method: debug  //  boolean debug(const unichar* message_a) ;  // method: setDebug  //  static boolean setDebug(Integral::DEBUG debug_level) {    debug_level_d = debug_level;    return true;  }    // constructor(s)  //  LexicalTree();  LexicalTree(const LexicalTree& copy_tree);    // method: destructor  //  ~LexicalTree() {}  // assign methods  //  boolean LexicalTree::assign(const LexicalTree& copy_tree_a);    // method: sofSize  //  long sofSize() const {    return Error::handle(name(), L"sofSize", Error::NOT_IMPLEM, __FILE__,			 __LINE__);  }    // method: read  //  boolean read(Sof& sof, long tag, const String& cname = CLASS_NAME) {    return Error::handle(name(), L"read", Error::NOT_IMPLEM, __FILE__,			 __LINE__);  }  // method: write  //  boolean write(Sof& sof, long tag, const String& cname = CLASS_NAME) const {    return Error::handle(name(), L"write", Error::NOT_IMPLEM, __FILE__,			 __LINE__);  }  // method: readData  //  boolean readData(Sof& sof, const String& pname = DEF_PARAM,		   long size = SofParser::FULL_OBJECT, boolean param = true,                   boolean nested = false) {    return Error::handle(name(), L"readData", Error::NOT_IMPLEM, __FILE__,			 __LINE__);  }  // method: writeData  //  boolean writeData(Sof& sof, const String& pname = DEF_PARAM) const {    return Error::handle(name(), L"writeData", Error::NOT_IMPLEM, __FILE__,			 __LINE__);  }  // equality method  //  boolean eq(const LexicalTree& compare_tree_a) const;    // method: new  //  static void* operator new(size_t size) {    return mgr_d.get();  }  // method: new[]  //  static void* operator new[](size_t size) {    return mgr_d.getBlock(size);  }  // method: delete  //  static void operator delete(void* ptr) {    mgr_d.release(ptr);  }  // method: delete[]  //  static void operator delete[](void* ptr) {    mgr_d.releaseBlock(ptr);  }  // method: setGrowSize  //  static boolean setGrowSize(long grow_size) {    return mgr_d.setGrow(grow_size);  }    // clear methods  //  boolean clear(Integral::CMODE ctype = Integral::DEF_CMODE);  //---------------------------------------------------------------------------  //  // class-specific public methods  //  //---------------------------------------------------------------------------  // set the algorithm  //  boolean setAlgorithm(LexicalTree::ALGORITHM algorithm){    return (algorithm_d = algorithm);  }  // get the algorithm  //  ALGORITHM getAlgorithm() {    return algorithm_d;  }  // set the implementation  //  boolean setImplementation(IMPLEMENTATION implementation) {    return (implementation_d = implementation);  }  // get the implementation  //  IMPLEMENTATION getImplementation() {    return implementation_d;  }    // expand subgraphs into lexical trees  //   static boolean   LexicalTree::expandLexicalTree(DiGraph<LexicalNode>& word_graph_a, 			       const Vector<DiGraph<LexicalNode> >& pron_vec_a,			       long level_a);  static  boolean expandLexicalTree(GVLexicalNode*& root_node_a, 			    const Vector<DiGraph<LexicalNode> >& pron_vec_a,			    long level_a);    //---------------------------------------------------------------------------  //  // private methods  //  //---------------------------------------------------------------------------private:  // some of these methods are reserved for future changes. If we move  // the ngram spreading in the search process, many of thsee  // methods will be useless  //  // debug functions  //  boolean debugTree(const unichar* message_a);    boolean debugVertex (GVLexicalNode*& lex_vert_a,		       boolean recursive_a = false,		       GALexicalNode*  arc_a = NULL);    // factor the lexical tree from a vertex  //  float factorLexicalTree( GVLexicalNode*,			   const HashTable<Long, Float>* ngram_a = NULL,			   long history_a  = -1 );  // factor the LexicalTree (whole tree )  //  float factorLexicalTree( const HashTable<Long, Float>* ngram_a = NULL,			   long history_a  = -1 ){    return factorLexicalTree(this->getStart(), ngram_a, history_a);  }  // build the lexical tree  //   boolean  LexicalTree::buildLexicalTree(DiGraph<LexicalNode>& word_graph_a, 			       const Vector<DiGraph<LexicalNode> >& pron_vec_a,				SingleLinkedList<LexicalTree>& tree_vec_a);      LexicalTree* buildLexicalTree(GVLexicalNode*& root_node_a, 			   const Vector<DiGraph<LexicalNode> >& pron_vec_a);    // insert a new pronication into the lexical tree  //  boolean insertPron(GVLexicalNode*& word_vert_a,		     const DiGraph<LexicalNode>& pron_a,		     const float & weight_a);  //insert a subgraph of a pronication into the lexical tree  //  boolean insertSubgraph(GVLexicalNode*& word_vert_a,			 GVLexicalNode*& curr_lex_vert_a,			 GVLexicalNode*& curr_pron_vert_a,			 const float & pron_prob_a,			 boolean insert_mode_a = true);    //expand a subgraph of a pronication into the lexical tree structure  //  static  boolean expandSubgraph(GVLexicalNode*& word_vert_a,			 GVLexicalNode*& curr_lex_vert_a,			 GVLexicalNode*& curr_pron_vert_a,			 const float & pron_prob_a,			 boolean insert_mode_a = true);    // this method find the successor with given symbol ID.  // If it is not exsited, return a NULL.  //  static  GVLexicalNode* findSuccVert(GVLexicalNode*& lex_vert_a,			      long symbol_id_a );  // overload the parent's insertArc function  //  boolean insertArc(GVLexicalNode* start_vertex_a,		    GVLexicalNode* end_vertex_a,		    boolean is_epsilon = GALexicalNode::DEF_EPSILON,		    float weight = GALexicalNode::DEF_WEIGHT);  };// end of include file//#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -