📄 trainnode.h
字号:
// file: $isip/class/search/TrainNode/TrainNode.h//// make sure definitions are only made once//#ifndef ISIP_TRAIN_NODE#define ISIP_TRAIN_NODE#ifndef ISIP_LONG#include <Long.h>#endif#ifndef ISIP_VECTOR#include <Vector.h>#endif#ifndef ISIP_VECTOR_FLOAT#include <VectorFloat.h>#endif#ifndef ISIP_VECTOR_DOUBLE#include <VectorDouble.h>#endif#ifndef ISIP_CONTEXT#include <Context.h>#endif#ifndef ISIP_STATISTICAL_MODEL#include <StatisticalModel.h>#endif// TrainNode: A class to store training information for each state in// the search space.//class TrainNode { //--------------------------------------------------------------------------- // // public constants // //---------------------------------------------------------------------------public: // define the class name // static const String CLASS_NAME; //---------------------------------------- // // i/o related constants // //---------------------------------------- static const String DEF_PARAM; //---------------------------------------- // // other important constants // //---------------------------------------- //---------------------------------------- // // default values and arguments // //---------------------------------------- // define the default time stamp // static const long DEF_TIMESTAMP = -1; //--------------------------------------- // // error codes // //--------------------------------------- //--------------------------------------------------------------------------- // // protected data // //---------------------------------------------------------------------------protected: // define the time instance (t) // long frame_d; // define the backward probability for the state at time (t) // double beta_d; // define the forward probability for the state at time (t) // double alpha_d; // define the score associated with the state at time (t) // double score_d; // define a flag that tells us if the train node is reachable form // the valid hypothesis // boolean is_valid_d; boolean is_alpha_valid_d; boolean is_beta_valid_d; boolean is_accum_valid_d; // define the trace/instance reference pointer // Context* reference_d; // define the statistical model pointer // StatisticalModel* stat_model_d; // define a static debug level // static Integral::DEBUG debug_level_d; // define a static memory manager // static MemoryManager mgr_d; //--------------------------------------------------------------------------- // // required public methods // //---------------------------------------------------------------------------public: // method: name // static const String& name() { return CLASS_NAME; } // method: diagnose // static boolean diagnose(Integral::DEBUG debug_level); // method: debug // boolean debug(const unichar* message) const; // method: setDebug // static boolean setDebug(Integral::DEBUG debug_level) { debug_level_d = debug_level; return true; } // method: destructor // ~TrainNode() { if (debug_level_d >= Integral::ALL) { fprintf(stdout, "Destructor of train_node: %p\n", this); fflush(stdout); } } // constructor(s) // TrainNode(); TrainNode(const TrainNode& copy_node); // assign methods // boolean assign(const TrainNode& copy_node); // method: sofSize // long sofSize() const { return Error::handle(name(), L"sofSize", Error::ARG, __FILE__, __LINE__); } // method: read // boolean read(Sof& sof, long tag, const String& cname = CLASS_NAME) { return Error::handle(name(), L"read", Error::ARG, __FILE__, __LINE__); } // method: write // boolean write(Sof& sof, long tag, const String& cname = CLASS_NAME) const { return Error::handle(name(), L"write", Error::ARG, __FILE__, __LINE__); } // method: readData // boolean readData(Sof& sof, const String& pname = DEF_PARAM, long size = SofParser::FULL_OBJECT, boolean param = true, boolean nested = false) { return Error::handle(name(), L"readData", Error::ARG, __FILE__, __LINE__); } // method: writeData // boolean writeData(Sof& sof, const String& pname = DEF_PARAM) const { return Error::handle(name(), L"writeData", Error::ARG, __FILE__, __LINE__); } // equality method // boolean eq(const TrainNode& compare_node) const; // method: new // static void* operator new(size_t size) { return mgr_d.get(); } // method: new[] // static void* operator new[](size_t size) { return mgr_d.getBlock(size); } // method: delete // static void operator delete(void* ptr) { mgr_d.release(ptr); } // method: delete[] // static void operator delete[](void* ptr) { mgr_d.releaseBlock(ptr); } // method: setGrowSize // static boolean setGrowSize(long grow_size) { return mgr_d.setGrow(grow_size); } // clear methods // boolean clear(Integral::CMODE ctype = Integral::DEF_CMODE); //--------------------------------------------------------------------------- // // class-specific public methods // //--------------------------------------------------------------------------- // method: setAlpha // boolean setAlpha(double arg) { return (alpha_d = arg); } // method: getAlpha // double getAlpha() const { return alpha_d; } // method: setBeta // boolean setBeta(double arg) { return (beta_d = arg); } // method: getBeta // double getBeta() const { return beta_d; } // method: setFrame // boolean setFrame(long arg) { return (frame_d = arg); } // method: getFrame // long getFrame() const { return frame_d; } // method: setScore // boolean setScore(double arg) { return (score_d = arg); } // method: getScore // double getScore() const { return score_d; } // method: setReference // boolean setReference(Context* arg) { return (reference_d = arg); } // method: getReference // Context* getReference() const { return reference_d; } // method: getStatisticalModel // StatisticalModel* getStatisticalModel() { return stat_model_d; } // method: setStatisticalModel // boolean setStatisticalModel(StatisticalModel* arg) { return (stat_model_d = arg); } // method: getValidModel // boolean getValidModel() const { if (stat_model_d != (StatisticalModel*)NULL) { return true; } return false; } // method: setValidNode // boolean setValidNode(boolean arg) { return (is_valid_d = arg); } // method: getValidNode // boolean getValidNode() const { return is_valid_d; } // method: setAlphaValid // boolean setAlphaValid(boolean arg = true) { return (is_alpha_valid_d = arg); } // method: isAlphaValid // boolean isAlphaValid() const { return is_alpha_valid_d; } // method: setAccumulatorValid // boolean setAccumulatorValid(boolean arg = true) { return (is_accum_valid_d = arg); } // method: isAccumulatorValid // boolean isAccumulatorValid() const { return is_accum_valid_d; } // method: setBetaValid // boolean setBetaValid(boolean arg = true) { return (is_beta_valid_d = arg); } // method: isBetaValid // boolean isBetaValid() const { return is_beta_valid_d; } //--------------------------------------------------------------------------- // // class-specific public methods: // accumulate and update methods needed for training models // //--------------------------------------------------------------------------- // method to update the models using the accumulators generated // during training // boolean update(VectorFloat& varfloor, long min_model); // method to accumulate the statistics in training which are // used to update the model // boolean accumulate(double utter_prob, Vector<VectorFloat>& data, float min_mpd, float min_occupancy); //--------------------------------------------------------------------------- // // private methods // //---------------------------------------------------------------------------private:};// end of include file//#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -