⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hashtablediagnose.h

📁 这是一个从音频信号里提取特征参量的程序
💻 H
📖 第 1 页 / 共 3 页
字号:
// file: $isip/class/dstr/HashTable/HashTableDiagnose.h// version: $Id: HashTableDiagnose.h,v 1.10 2001/04/30 02:03:57 duncan Exp $//// make sure definitions are only made once//#ifndef ISIP_HASH_TABLE_DIAGNOSE#define ISIP_HASH_TABLE_DIAGNOSE// isip include files//#ifndef ISIP_HASH_TABLE#include <HashTable.h>#endif// HashTableDiagnose: a class that contains the diagnose method of// HashTable class.//template<class THashable, class TObject>class HashTableDiagnose : public HashTable<THashable, TObject> {  //---------------------------------------------------------------------------  //  // public constants  //  //---------------------------------------------------------------------------public:    // define the class name  //    //----------------------------------------  //  // i/o related constants  //  //----------------------------------------      //----------------------------------------  //  // default values and arguments  //  //----------------------------------------  // default values  //      // default arguments to methods  //    //----------------------------------------  //  // error codes  //  //----------------------------------------      //---------------------------------------------------------------------------  //  // protected data  //  //---------------------------------------------------------------------------protected:  //---------------------------------------------------------------------------  //  // required public methods  //  //---------------------------------------------------------------------------public:  // method: name  //  static const String& name() {    return HashTable<THashable, TObject>::name();  }  // other static methods  //  static boolean diagnose(Integral::DEBUG debug_level);  // debug methods  //  these methods are omitted since this class does not have data  //  members and operations    //    // destructor/constructor(s):  //  these methods are omitted since this class does not have data  //  members and operations  //  // assign methods:  //  these methods are omitted since this class does not have data  //  members and operations  //  // operator= methods:  //  these methods are omitted since this class does not have data  //  members and operations  //    // i/o methods:  //  these methods are omitted since this class does not have data  //  members and operations  //  // equality methods:  //  these methods are omitted since this class does not have data  //  members and operations  //  // memory-management methods:  //  these methods are omitted since this class does not have data  //  members and operations  //    //---------------------------------------------------------------------------  //  // class-specific public methods  //  //---------------------------------------------------------------------------  //  these methods are omitted since this class does not have data  //  members and operations  //    //---------------------------------------------------------------------------  //  // private methods  //  //---------------------------------------------------------------------------private:}; // below are all the methods for the HashTableDiagnose template class////-----------------------------------------------------------------------------//// required static methods////-----------------------------------------------------------------------------// method: diagnose//// arguments://  Integral::DEBUG level: (input) debug level for diagnostics//// return: a boolean value indicating status//template<class THashable, class TObject>boolean HashTableDiagnose<THashable, TObject>::diagnose(Integral::DEBUG level_a) {  //----------------------------------------------------------------------  //  // 0. preliminaries  //  //----------------------------------------------------------------------  // output the class name  //  if (level_a > Integral::NONE) {    SysString output(L"diagnosing class ");    output.concat(CLASS_NAME);    output.concat(L": ");    Console::put(output);    Console::increaseIndention();  }  //---------------------------------------------------------------------  //  // 1. required public methods  //  //---------------------------------------------------------------------  // set indentation  //  if (level_a > Integral::NONE) {    Console::put(L"testing required public methods...\n");    Console::increaseIndention();  }  // test the debug methods  //  setDebug(debug_level_d);    if (level_a > Integral::BRIEF) {    Integral::debug(L"debug");  }  // prepare items and keys for all the hash tables used in this diagnose   //  long num_elem = 20;  Char** items = new Char*[num_elem];  String* keys = new String[num_elem];  Char key_char;    for (long i = 0; i < num_elem; i++) {    items[i] = new Char((unichar)((int)'a' + i));    key_char.assign((unichar)((int)'a' + i));    keys[i].assign(key_char);    keys[i].concat(L"-key");  }    // we change some keys in order to create some collisions  //  keys[5].assign(L"ab-key");  // hashes to 17 from 49  keys[9].assign(L"az-key");  // hashes to 17 from 49  keys[13].assign(L"ad-key");  // hashes to 17 from 49  keys[15].assign(L"ah-key");  // hashes to 1 from 49  keys[19].assign(L"aa-key");  // hashes to 1 from 49  // test constructors  //  HashTable<String, Char> def_htable(SYSTEM, (long)50);    if (def_htable.getCapacity() != (long)50) {    Long cap = def_htable.getCapacity();    cap.debug(L"capacity");    return Error::handle(name(), L"constructor", Error::TEST, __FILE__,			 __LINE__);  }    for (long i = 0; i < num_elem; i++) {    def_htable.insert(keys[i], items[i]);  }  // copy constructor  //  HashTable<String, Char> copy_htable(def_htable);         // the two constructed hash tables should be the same now  //  if (def_htable.ne(copy_htable)) {    def_htable.debug(L"def_htable");    return Error::handle(name(), L"copy constructor", Error::TEST, __FILE__,			 __LINE__);  }  {    // test constructors    //    HashTable<String, Char> def_htable;        if (def_htable.getCapacity() != (long)128) {      return Error::handle(name(), L"constructor", Error::TEST, __FILE__,			   __LINE__);    }        for (long i = 0; i < num_elem; i++) {      def_htable.insert(keys[i], items[i]);    }        // copy constructor    //    HashTable<String, Char> copy_htable(def_htable);             // the two constructed hash tables should be the same now    //    if (def_htable.ne(copy_htable)) {      def_htable.debug(L"def_htable");      return Error::handle(name(), L"copy constructor", Error::TEST, __FILE__,			   __LINE__);    }  }    // check the constructors and destructors for allocating on the dynamic  // memory heap  //  HashTable<String, Char>* def_dyn_htable =    new HashTable<String, Char>(SYSTEM, (long)50);  if (def_dyn_htable->getCapacity() != (long)50) {    return Error::handle(name(), L"constructor", Error::TEST, __FILE__,			 __LINE__);  }    for (long i = 0; i < num_elem; i++) {    def_dyn_htable->insert(keys[i], items[i]);  }    HashTable<String, Char>* copy_dyn_htable =    new HashTable<String, Char>(*def_dyn_htable);    // the two constructed hash tables should be the same now  //  if (def_dyn_htable->ne(*copy_dyn_htable)) {        return Error::handle(name(), L"copy constructor", Error::TEST, __FILE__,			 __LINE__);  }  // see if we can dynamically delete  //  delete def_dyn_htable;  delete copy_dyn_htable;  {    // check the constructors and destructors for allocating on the dynamic    // memory heap    //    HashTable<String, Char>* def_dyn_htable =      new HashTable<String, Char>();    if (def_dyn_htable->getCapacity() != (long)128) {      return Error::handle(name(), L"constructor", Error::TEST, __FILE__,			   __LINE__);    }      for (long i = 0; i < num_elem; i++) {      def_dyn_htable->insert(keys[i], items[i]);    }        HashTable<String, Char>* copy_dyn_htable =      new HashTable<String, Char>(*def_dyn_htable);        // the two constructed hash tables should be the same now    //    if (def_dyn_htable->ne(*copy_dyn_htable)) {          return Error::handle(name(), L"copy constructor", Error::TEST, __FILE__,			   __LINE__);    }        // see if we can dynamically delete    //    delete def_dyn_htable;    delete copy_dyn_htable;  }    // check the constructors for allocating on the stack  //  HashTable<String, Char> def_htable_2(USER, (long)50);  if (def_htable_2.getCapacity() != (long)50) {    return Error::handle(name(), L"constructor", Error::TEST, __FILE__,			 __LINE__);  }    for (long i = 0; i < num_elem; i++) {    def_htable_2.insert(keys[i], items[i]);  }  // copy constructor  //    HashTable<String, Char> copy_htable_2(def_htable_2);  // the two constructed hash tables should be the same now  //  if (def_htable_2.ne(copy_htable_2)) {    return Error::handle(name(), L"copy constructor", Error::TEST, __FILE__,			 __LINE__);  }  {    // check the constructors for allocating on the stack    //    HashTable<String, Char> def_htable_2(USER);    if (def_htable_2.getCapacity() != (long)128) {      return Error::handle(name(), L"constructor", Error::TEST, __FILE__,			   __LINE__);    }        for (long i = 0; i < num_elem; i++) {      def_htable_2.insert(keys[i], items[i]);    }        // copy constructor    //      HashTable<String, Char> copy_htable_2(def_htable_2);    // the two constructed hash tables should be the same now    //    if (def_htable_2.ne(copy_htable_2)) {      return Error::handle(name(), L"copy constructor", Error::TEST, __FILE__,			   __LINE__);    }  }  // check the constructors and destructors for allocating on the dynamic  // memory heap  //  HashTable<String, Char>* def_dyn_htable_2 =    new HashTable<String, Char>(USER, (long)50);  if (def_dyn_htable_2->getCapacity() != (long)50) {    return Error::handle(name(), L"constructor", Error::TEST, __FILE__,			 __LINE__);  }  for (long i = 0; i < num_elem; i++) {    def_dyn_htable_2->insert(keys[i], items[i]);  }    HashTable<String, Char>* copy_dyn_htable_2 = new HashTable<String, Char>(*def_dyn_htable_2);    // the two constructed hash tables should be the same now  //  if (def_dyn_htable_2->ne(*copy_dyn_htable_2)) {    return Error::handle(name(), L"copy constructor", Error::TEST, __FILE__,			 __LINE__);  }    // see if we can dynamically delete  //  delete def_dyn_htable_2;  delete copy_dyn_htable_2;  {    // check the constructors and destructors for allocating on the dynamic    // memory heap    //    HashTable<String, Char>* def_dyn_htable_2 =      new HashTable<String, Char>(USER);        if (def_dyn_htable_2->getCapacity() != (long)128) {      return Error::handle(name(), L"constructor", Error::TEST, __FILE__,			   __LINE__);    }        for (long i = 0; i < num_elem; i++) {      def_dyn_htable_2->insert(keys[i], items[i]);    }        HashTable<String, Char>* copy_dyn_htable_2 =      new HashTable<String, Char>(*def_dyn_htable_2);        // the two constructed hash tables should be the same now    //    if (def_dyn_htable_2->ne(*copy_dyn_htable_2)) {      return Error::handle(name(), L"copy constructor", Error::TEST, __FILE__,			   __LINE__);    }        // see if we can dynamically delete    //    delete def_dyn_htable_2;    delete copy_dyn_htable_2;      }  // test large allocation construction and deletion  //  if (level_a >= Integral::ALL) {        // output an informative message    //    Console::put(L"\ntesting large chunk memory allocation and deletion:\n");        // set the memory to a strange block size so we can hopefully catch any    // frame overrun errors    //    HashTable<THashable, TObject>::setGrowSize((long)13);        // loop for a large number of times creating and deleting a large number    // of htables at each loop    //    for (long j = 1; j <= 10; j++) {            HashTable<String, Char>** htables = new HashTable<String, Char>*[j * 50];            HashTable<String, Char>** system_htables = new HashTable<String, Char>*[j * 50];            // create the items      //      for (long i = 0; i < j * 50; i++) {	system_htables[i] =  new HashTable<String, Char>();	htables[i] =  new HashTable<String, Char>(USER);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -