📄 alg074.c
字号:
/*
* ITERATIVE REFINEMENT ALGORITHM 7.4
*
* To approximate the solution to the linear system Ax=b when A is
* suspected to be ill-conditioned:
*
* INPUT: The number of equations and unknowns n; the entries
* A(i,j), 1<=i, j<=n, of the matrix A; the entries b(i),
* 1<=i<=n, of the inhomogeneous term b; the maximum number
* of iterations N.
*
* OUTPUT: The approximation XX(1),...,XX(n) or a message that the
* number of iterations was exceeded.
*/
#include<stdio.h>
#include<math.h>
#define ZERO 1.0E-20
#define true 1
#define false 0
double absval(double);
double CHIP(int RND, int R, double X);
void INPUT(int *, double [][11], double *, int*, int *, int *, int *);
void OUTPUT(FILE **);
main()
{
double A[10][11],B[10][11],X[10],XX[10],R[10];
double S,C,TOL,COND,XXMAX,YMAX,ERR1,TEMP;
int NROW[10];
int IS,FLAG,N,M,I,J,NN,K,L,KK,LL,D,I1,J1,OK,RND;
FILE *OUP[1];
INPUT(&OK, A, &TOL, &D, &RND, &N, &NN);
if (OK) {
OUTPUT(OUP);
M = N + 1;
fprintf(*OUP, "Original system\n");
for (I=1; I<=N; I++) {
for (J=1; J<=M; J++)
fprintf(*OUP," %.10e",A[I-1][J-1]);
fprintf(*OUP,"\n");
}
if (RND == 1) fprintf(*OUP,"Rounding to %d Digits.\n",D);
else fprintf(*OUP,"Chopping to %d Digits.\n",D);
fprintf(*OUP,"\n Modified System \n");
for (I=1; I<=N; I++) {
NROW[I-1] = I;
for (J=1; J<=M; J++) {
A[I-1][J-1] = CHIP(RND,D,A[I-1][J-1]);
B[I-1][J-1] = A[I-1][J-1];
fprintf(*OUP," %.10e", A[I-1][J-1]);
}
fprintf(*OUP, "\n");
}
/* NROW and B have been initialized,
Gauss elimination will begin */
/* STEP 0 */
I = 1;
while ((I <= N-1) && OK) {
KK = I;
while ((absval(A[KK-1][I-1]) < ZERO) && (KK <= N))
KK++;
if (KK > N) {
OK = false;
fprintf(*OUP, "System does not have a unique solution.\n");
}
else {
if (KK != I) {
/* Row interchange necessary */
IS = NROW[I-1];
NROW[I-1] = NROW[KK-1];
NROW[KK-1] = IS;
for (J=1; J<=M; J++) {
C = A[I-1][J-1];
A[I-1][J-1] = A[KK-1][J-1];
A[KK-1][J-1] = C;
}
}
for (J=I+1; J<=N; J++) {
A[J-1][I-1] = CHIP(RND,D,A[J-1][I-1]/A[I-1][I-1]);
for (L=I+1; L<=M; L++)
A[J-1][L-1] = CHIP(RND,D,A[J-1][L-1]-
CHIP(RND,D,A[J-1][I-1]*A[I-1][L-1]));
}
}
I++;
}
if ((absval(A[N-1][N-1]) < ZERO) && OK) {
OK = false;
fprintf(*OUP, "System has singular matrix\n");
}
if (OK) {
fprintf(*OUP, "Reduced system\n");
for (I=1; I<=N; I++) {
for (J=1; J<=M; J++) fprintf(*OUP, " %.10e", A[I-1][J-1]);
fprintf(*OUP, "\n");
}
X[N-1] = CHIP(RND,D,A[N-1][M-1]/A[N-1][N-1]);
for (I=1; I<=N-1; I++) {
J = N-I;
S = 0.0;
for (L=J+1; L<=N; L++)
S = CHIP(RND,D,S-CHIP(RND,D,A[J-1][L-1]*X[L-1]));
S = CHIP(RND,D,A[J-1][M-1]+S);
X[J-1] = CHIP(RND,D,S/A[J-1][J-1]);
}
}
fprintf(*OUP, "Initial solution\n");
for (I=1; I<=N; I++) fprintf(*OUP," %.10e", X[I-1]);
fprintf(*OUP, "\n");
/* Refinement begins */
/* STEP 1 */
if (OK) {
K = 1;
for (I=1; I<=N; I++) XX[I-1] = X[I-1];
}
/* STEP 2 */
while (OK && (K <= NN)) {
/* LL is set to 1 if the desired accuracy in any component
is not achieved. Thus, LL is initially 0 for each
iteration. */
LL = 0;
/* STEP 3 */
for (I=1; I<=N; I++) {
R[I-1] = 0.0;
for (J=1; J<=N; J++)
R[I-1] = CHIP(RND,2*D,R[I-1]-
CHIP(RND,2*D,B[I-1][J-1]*XX[J-1]));
R[I-1] = CHIP(RND,2*D,B[I-1][M-1]+R[I-1]);
}
fprintf(*OUP, "Residual number %d\n", K);
for (I=1; I<=N; I++) {
R[I-1] = CHIP(RND,D,R[I-1]);
fprintf(*OUP, "%18.10e ", R[I-1]);
}
fprintf(*OUP, "\n");
/* STEP 4 */
/* Solve the linear system in the same order as in
step 0. The solution will be placed in X instead
of in Y */
for (I=1; I<=N-1; I++) {
I1 = NROW[I-1];
for (J=I+1; J<=N; J++) {
J1 = NROW[J-1];
R[J1-1] = CHIP(RND,D,R[J1-1]-
CHIP(RND,D,A[J-1][I-1]*R[I1-1]));
}
}
X[N-1] = CHIP(RND,D,R[NROW[N-1]-1]/A[N-1][N-1]);
for (I=1; I<=N-1 ; I++) {
J = N-I;
S = 0.0;
for (L=J+1; L<=N; L++)
S = CHIP(RND,D,S-CHIP(RND,D,A[J-1][L-1]*X[L-1]));
S = CHIP(RND,D,S+R[NROW[J-1]-1]);
X[J-1] = CHIP(RND,D,S/A[J-1][J-1]);
}
fprintf(*OUP, "Vector Y\n");
for (I=1; I<=N; I++) fprintf(*OUP,"%18.10e ", X[I-1]);
fprintf(*OUP, "\n");
/* Steps 5 and 6 */
XXMAX = 0.0;
YMAX = 0.0;
ERR1 = 0.0;
for (I=1; I<=N; I++) {
/* If not accurate set LL to 1 */
if (absval(X[I-1]) > TOL) LL = 1;
if (K == 1) {
if (absval(X[I-1]) > YMAX)
YMAX = absval(X[I-1]);
if (absval(XX[I-1]) > XXMAX)
XXMAX = absval(XX[I-1]);
}
TEMP = XX[I-1];
XX[I-1] = CHIP(RND,D,XX[I-1]+X[I-1]);
TEMP = absval(TEMP-XX[I-1]);
if (TEMP > ERR1) ERR1 = TEMP;
}
if (ERR1 <= TOL) LL = 2;
if (K == 1) COND = YMAX/XXMAX*exp(D*log(10.0));
fprintf(*OUP, "New approximation\n");
for (I=1; I<=N; I++) fprintf(*OUP, "%18.10e ", XX[I-1]);
fprintf(*OUP, "\n");
/* STEP 7 */
if (LL == 0) {
fprintf(*OUP, "The above vector is the solution.\n");
OK = false;
}
else if (LL == 2) {
fprintf(*OUP,"The above vector is the best possible\n");
fprintf(*OUP,"with TOL = %18.10e \n",TOL);
OK = false;
}
else K++;
/* Step 8 is not used in this implementation */
}
if (K > NN)
fprintf(*OUP, "Maximum Number of Iterations Exceeded.\n");
fprintf(*OUP, "Condition number is %.10e\n", COND);
fclose(*OUP);
}
return 0;
}
void INPUT(int *OK,double A[][11],double *TOL,int *D,int *RND,int *N,int *NN)
{
int I, J;
char A1;
char NAME[30];
FILE *INP;
printf("This is the Iterative Refinement Method.\n");
printf("The array will be input from a text file in the order\n");
printf("A(1,1), A(1,2), ..., A(1,n+1), A(2,1), A(2,2), ..., A(2,n+1),\n");
printf("..., A(n,1), A(n,2), ..., A(n,n+1)\n");
printf("Place as many entries as desired on each line, but separate\n");
printf("entries with ");
printf("at least one blank.\n\n\n");
printf("Has the input file been created? - enter Y or N.\n");
scanf("%c",&A1);
*OK = false;
if ((A1 == 'Y') || (A1 == 'y')) {
printf("Input the file name in the form - drive:name.ext\n");
printf("for example: A:DATA.DTA\n");
scanf("%s", NAME);
INP = fopen(NAME, "r");
*OK = false;
while (!(*OK)) {
printf("Input the number of equations - an integer.\n");
scanf("%d", N);
if (*N > 0) {
for (I=1; I<=*N; I++) {
for (J=1; J<=*N+1; J++) fscanf(INP, "%lf", &A[I-1][J-1]);
fscanf(INP, "\n");
}
*OK = true;
fclose(INP);
}
else printf("The number must be a positive integer\n");
}
/* NN is used for the maximum number of iterations */
*OK = false;
while(!(*OK)) {
printf("Input maximum number of iterations.\n");
scanf("%d", NN);
if (*NN > 0) *OK = true;
else printf("Number must be a positive integer.\n");
}
*OK = false;
printf("Choice of rounding or chopping:\n");
printf("1. Rounding\n");
printf("2. Chopping\n");
printf("Enter 1 or 2.\n");
scanf("%d", RND);
while (!(*OK)) {
printf("Input number of digits D <= 8 of rounding\n");
scanf("%d", D);
if (*D > 0) *OK = true;
else printf("D must be a positive integer.\n");
}
*OK = false;
while(!(*OK)) {
printf("Input tolerance, which is usually 10 ** (-D).\n");
scanf("%lf", TOL);
if (*TOL > 0.0) *OK = true;
else printf("Tolerance must be a positive.\n");
}
}
else printf("The program will end so the input file can be created.\n");
}
void OUTPUT(FILE **OUP)
{
int I, J, FLAG;
char NAME[30];
printf("Choice of output method:\n");
printf("1. Output to screen\n");
printf("2. Output to text file\n");
printf("Please enter 1 or 2.\n");
scanf("%d", &FLAG);
if (FLAG == 2) {
printf("Input the file name in the form - drive:name.ext\n");
printf("for example: A:OUTPUT.DTA\n");
scanf("%s", NAME);
*OUP = fopen(NAME, "w");
}
else *OUP = stdout;
fprintf(*OUP, "ITERATIVE REFINEMENT METHOD\n\n");
}
double CHIP(int RND, int R, double X)
{
/* The function chip rounds or chops the number x to r digits. */
double TEMP1[5], TN[5];
double SL, Z, Z1, Z2, Y, TEMP, TT;
int ZZ[5];
int NN, MM, J, I, OK;
if (absval(X) < ZERO) return 0.0;
else {
I = 0;
Y = X;
OK = true;
Z1 = exp(R*log(10.0));
Z2 = exp((R-1.0)*log(10.0));
if (absval(X) >= Z1) {
while (OK) {
Y = Y/10.0;
I++;
if (absval(Y) < Z1) OK = false;
}
}
else
if (absval(X) < Z2) {
while (OK) {
Y = Y*10.0;
I--;
if (absval(Y) >= Z2) OK = false;
}
}
SL = exp(-R*log(10.0));
if (RND == 1) {
if (Y >= 0.0) {
TEMP = Y+0.5+0.1*SL;
}
else {
TEMP = Y-0.5-0.1*SL;
}
}
else {
if (Y >= 0.0) {
TEMP = Y+0.1*SL;
}
else {
TEMP = Y-0.1*SL;
}
}
NN = R/4;
MM = 4*NN;
TT = TEMP;
for (J=1; J<=NN; J++) {
TN[J] = exp(MM*log(10.0));
TEMP1[J] = TT/TN[J];
ZZ[J] = TEMP1[J];
TT = TT - ZZ[J]*TN[J];
MM = MM - 4;
}
ZZ[NN+1] = TT;
TN[NN+1] = 1;
Z = ZZ[1]*TN[1];
for (J=2; J<=NN+1; J++)
Z = Z + ZZ[J]*TN[J];
Z = Z*exp(I*log(10.0));
return Z;
}
}
/* Absolute Value Function */
double absval(double val)
{
if (val >= 0) return val;
else return -val;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -