📄 alg123.m
字号:
% CRANK-NICOLSON ALGORITHM 12.3
%
% To approximate the solution of the parabolic partial-differential
% equation subject to the boundary conditions
% u(0,t) = u(l,t) = 0, 0 < t < T = max t
% and the initial conditions
% u(x,0) = F(x), 0 <= x <= l:
%
% INPUT: endpoint l; maximum time T; constant ALPHA; integers m, N:
%
% OUTPUT: approximations W(I,J) to u(x(I),t(J)) for each
% I = 1,..., m-1 and J = 1,..., N.
syms('OK', 'FX', 'FT', 'ALPHA', 'M', 'N', 'M1', 'M2', 'H', 'K');
syms('VV', 'V', 'I', 'L', 'U', 'J', 'T', 'Z', 'I1');
syms('FLAG', 'NAME', 'OUP', 'X', 's', 'x');
TRUE = 1;
FALSE = 0;
fprintf(1,'This is the Crank-Nicolson Method.\n');
fprintf(1,'Input the function F(X) in terms of x.\n');
fprintf(1,'for example, sin(pi*x) \n');
s = input(' ','s');
F = inline(s,'x');
fprintf(1,'The lefthand endpoint on the X-axis is 0.\n');
OK =FALSE;
while OK == FALSE
fprintf(1,'Input the righthand endpoint on the X-axis.\n');
FX = input(' ');
if FX <= 0
fprintf(1,'Must be positive number.\n');
else
OK = TRUE;
end;
end;
OK = FALSE;
while OK == FALSE
fprintf(1,'Input the maximum value of the time variable T.\n');
FT = input(' ');
if FT <= 0
fprintf(1,'Must be positive number.\n');
else
OK = TRUE;
end;
end;
fprintf(1,'Input the constant alpha.\n');
ALPHA = input(' ');
OK = FALSE;
while OK == FALSE
fprintf(1,'Input integer m = number of intervals on X-axis\n');
fprintf(1,'and N = number of time intervals - on separate lines.\n');
fprintf(1,'Note that m must be 3 or larger.\n');
M = input(' ');
N = input(' ');
if M <= 2 | N <= 0
fprintf(1,'Numbers are not within correct range.\n');
else
OK = TRUE;
end;
end;
if OK == TRUE
V = zeros(1,M);
L = zeros(1,M);
U = zeros(1,M);
Z = zeros(1,M);
M1 = M-1;
M2 = M-2;
% STEP1
H = FX/M;
K = FT/N;
% VV is used for lambda
VV = ALPHA^2*K/(H^2);
% set V(M) = 0
V(M) = 0;
% STEP 2
for I = 1 : M1
V(I) = F(I*H);
end;
% STEP 3
% STEPS 3 through 11 solve a tridiagonal linear system
% using Crout reduction
L(1) = 1+VV;
U(1) = -VV/(2*L(1));
% STEP 4
for I = 2 : M2
L(I) = 1+VV+VV*U(I-1)/2;
U(I) = -VV/(2*L(I));
end;
% STEP 5
L(M1) = 1+VV+0.5*VV*U(M2);
% STEP 6
for J = 1 : N
% STEP 7
% current t(j)
T = J*K;
Z(1) = ((1-VV)*V(1)+VV*V(2)/2)/L(1);
% STEP 8
for I = 2 : M1
Z(I) = ((1-VV)*V(I)+0.5*VV*(V(I+1)+V(I-1)+Z(I-1)))/L(I);
end;
% STEP 9
V(M1) = Z(M1);
% STEP 10
for I1 = 1 : M2
I = M2-I1+1;
V(I) = Z(I)-U(I)*V(I+1);
end;
end;
% STEP 11
fprintf(1,'Choice of output method:\n');
fprintf(1,'1. Output to screen\n');
fprintf(1,'2. Output to text file\n');
fprintf(1,'Please enter 1 or 2.\n');
FLAG = input(' ');
if FLAG == 2
fprintf(1,'Input the file name in the form - drive:\\name.ext\n');
fprintf(1,'for example: A:\\OUTPUT.DTA\n');
NAME = input(' ','s');
OUP = fopen(NAME,'wt');
else
OUP = 1;
end;
fprintf(OUP, 'CRANK-NICOLSON METHOD\n\n');
fprintf(OUP, ' I X(I) W(X(I),%12.6e)\n', FT);
for I = 1 : M1
X = I*H;
fprintf(OUP, '%3d %11.8f %13.8f\n', I, X, V(I));
end;
if OUP ~= 1
fclose(OUP);
fprintf(1,'Output file %s created successfully \n',NAME);
end;
end;
% STEP 12
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -