📄 alg046.m
字号:
% GAUSSIAN TRIPLE INTEGRAL ALGORITHM 4.6
%
% To approximate I = triple integral ( ( f(x,y,z) dz dy dx ) ) with
% limits of integration from a to b for x, from c(x) to d(x) for y, and
% from alpha(x,y) to beta(x,y) for z.
%
% INPUT: endpoints a, b; positive integers m, n, p. (Assume that the
% roots r(i,j) and coefficients c(i,j) are available for i
% equals m, n, and p and for 1 <= j <= i.
syms('OK', 'A', 'B', 'M', 'N', 'P', 'r', 'co', 'H1', 'H2', 'AJ', 'I');
syms('X', 'JX', 'C1', 'D1', 'K1', 'K2', 'J', 'Y', 'JY', 'Z1', 'Z2');
syms('L1', 'L2', 'K', 'Z', 'Q','x','s','y','z');
TRUE = 1;
FALSE = 0;
fprintf(1,'This is Gaussian Quadrature for triple integrals.\n');
fprintf(1,'Input the function F(x,y,z) in terms of x, y, and z\n');
fprintf(1,'For example: sqrt(x^2+y^2)*z\n');
s = input(' ','s');
F = inline(s,'x','y','z');
fprintf(1,'Input the functions C(x), and D(x) in terms of x \n');
fprintf(1,'on separate lines\n');
fprintf(1,'For example: cos(x) \n');
fprintf(1,' sin(x) \n');
s = input(' ','s');
C = inline(s,'x');
s = input(' ','s');
D = inline(s,'x');
fprintf(1,'Input the functions alpha(x,y) and beta(x,y) in \n');
fprintf(1,'terms of x and y on separate lines\n');
s = input(' ','s');
alpha = inline(s,'x','y');
s = input(' ','s');
beta = inline(s,'x','y');
OK = FALSE;
while OK == FALSE
fprintf(1,'Input lower limit of integration and upper limit of \n');
fprintf(1,'integration on separate lines\n');
A = input(' ');
B = input(' ');
if A > B
fprintf(1,'Lower limit must be less than upper limit\n');
else
OK = TRUE;
end
end
OK = FALSE;
while OK == FALSE
fprintf(1,'Input three integers M > 1, N > 1, P > 1. This\n');
fprintf(1,'implementation of Gaussian quadrature requires\n');
fprintf(1,'that they are less than or equal to 5.\n');
fprintf(1,'They will be used in ');
fprintf(1,'first, second, and third dimensions, resp.\n');
fprintf(1,' on separate lines.\n');
M = input(' ');
N = input(' ');
P = input(' ');
if M <= 1 | N <= 1 | P <= 1
fprintf(1,'Integers must be greater than 1.\n');
else
if M > 5 | N > 5 | P > 5
fprintf(1,'Integers must be less than or equal to 5.\n');
else
OK = TRUE;
end
end
end
r = zeros(4,5);
co = zeros(4,5);
if OK == TRUE
r(1,1) = 0.5773502692;
r(1,2) = -r(1,1);
co(1,1) = 1.0;
co(1,2) = 1.0;
r(2,1) = 0.7745966692;
r(2,2) = 0.0;
r(2,3) = -r(2,1);
co(2,1) = 0.5555555556;
co(2,2) = 0.8888888889;
co(2,3) = co(2,1);
r(3,1) = 0.8611363116;
r(3,2) = 0.3399810436;
r(3,3) = -r(3,2);
r(3,4) = -r(3,1);
co(3,1) = 0.3478548451;
co(3,2) = 0.6521451549;
co(3,3) = co(3,2);
co(3,4) = co(3,1);
r(4,1) = 0.9061798459;
r(4,2) = 0.5384693101;
r(4,3) = 0.0;
r(4,4) = -r(4,2);
r(4,5) = -r(4,1);
co(4,1) = 0.2369268850;
co(4,2) = 0.4786286705;
co(4,3) = 0.5688888889;
co(4,4) = co(4,2);
co(4,5) = co(4,1);
% STEP 1
H1 = (B-A)/2;
H2 = (B+A)/2;
% use AJ instead of J
AJ = 0;
% STEP 2
for I = 1:M
% STEP 3
X = H1*r(M-1,I)+H2;
JX = 0;
C1 = C(X);
D1 = D(X);
K1 = (D1-C1)/2;
K2 = (D1+C1)/2;
% STEP 4
for J = 1:N
% STEP 5
Y = K1*r(N-1,J)+K2;
JY = 0;
% use Z1 for Beta and Z2 for Alpha
Z1 = beta(X,Y);
Z2 = alpha(X,Y);
L1 = (Z1-Z2)/2;
L2 = (Z1+Z2)/2;
% STEP 6
for K = 1:P
Z = L1*r(P-1,K)+L2;
Q = F(X,Y,Z);
JY = JY+co(P-1,K)*Q;
end
% STEP 7
JX = JX+co(N-1,J)*L1*JY;
end
% STEP 8
AJ = AJ+co(M-1,I)*K1*JX;
end
% STEP 9
AJ = AJ*H1;
% STEP 10
fprintf(1,'\nThe triple integral of F from %12.8f to %12.8f is ', A, B);
fprintf(1,'%.10e\n', AJ);
fprintf(1,' obtained with M = %3d , N = %3d and P = %3d\n', M, N, P);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -