📄 alg075.m
字号:
% CONJUGATE GRADIENT ALGORITHM 7.5
%
% To solve Ax = b given the preconditioning matrix C inverse
% and an initial approximation
% x(0):
%
% INPUT: the number of equations and unknowns n; the entries
% A(I,J), 1<=I, J<=n, of the matrix A; the entries
% B(I), 1<=I<=n, of the inhomogeneous term b; the
% entries C({I,J), 1<=I, J<=n, of the preconditioning
% matrix C inverse, entries XO(I), 1<=I<=n, of x(0);
% tolerance TOL; maximum number of iterations N.
%
% OUTPUT: the approximate solution X(1),...,X(n) and its
% residual vector R(1),...,R(N) or a message
% that the number of iterations was exceeded.
syms('OK','AA','NAME','INP','N','I','J','A','X1','TOL','NN','W');
syms('K','ERR','S','FLAG','OUP','R','T','ALPHA','BETA','U','V');
syms('CI','QERR','ERR1','CT','SS','Z');
TRUE = 1;
FALSE = 0;
fprintf(1,'This is the Conjugate Gradient Method for Linear Systems.\n');
OK = FALSE;
fprintf(1,'The array will be input from a text file in the order:\n');
fprintf(1,'A(1,1), A(1,2), ..., A(1,n+1), A(2,1), A(2,2),\n');
fprintf(1,'..., A(2,n+1),\n');
fprintf(1,'..., A(n,1), A(n,2), ..., A(n,n+1)\n\n');
fprintf(1,'Place as many entries as desired on each line,\n');
fprintf(1,'but separate ');
fprintf(1,'entries with at least one blank.\n');
fprintf(1,'Do the same for the input of the inverse of C.\n');
fprintf(1,'The initial approximation should follow \n');
fprintf(1,'in same format.\n\n\n');
fprintf(1,'Has the input file been created? - enter Y or N.\n');
AA = input(' ','s');
if AA == 'Y' | AA == 'y'
fprintf(1,'Input the file name in the form - drive:\\name.ext\n');
fprintf(1,'for example: A:\\DATA.DTA\n');
NAME = input(' ','s');
INP = fopen(NAME,'rt');
OK = FALSE;
while OK == FALSE
fprintf(1,'Input the number of equations - an integer.\n');
N = input(' ');
if N > 0
A = zeros(N,N+1);
CI = zeros(N,N);
Q = zeros(N,N);
X1 = zeros(1,N);
R = zeros(1,N);
W = zeros(1,N);
V = zeros(1,N);
U = zeros(1,N);
Z = zeros(1,N);
for I = 1 : N
for J = 1 : N+1
A(I,J) = fscanf(INP, '%f',1);
end;
end;
for I = 1 : N
for J = 1 : N
CI(I,J) = fscanf(INP, '%f',1);
CT(J,I) = CI(I,J);
end;
end;
for I = 1 : N
X1(I) = fscanf(INP, '%f',1);
end;
% use X1 for X0
OK = TRUE;
fclose(INP);
else
fprintf(1,'The number must be a positive integer.\n');
end;
end;
OK = FALSE;
while OK == FALSE
fprintf(1,'Input the tolerance.\n');
TOL = input(' ');
if TOL > 0
OK = TRUE;
else
fprintf(1,'Tolerance must be a positive number.\n');
end;
end;
OK = FALSE;
while OK == FALSE
fprintf(1,'Input maximum number of iterations.\n');
NN = input(' ');
if NN > 0
OK = TRUE;
else
fprintf(1,'Number must be a positive integer.\n');
end;
end;
else
fprintf(1,'The program will end so the input file can be created.\n');
end;
if OK == TRUE
fprintf(1,'Choice of output method:\n');
fprintf(1,'1. Output to screen\n');
fprintf(1,'2. Output to text file\n');
fprintf(1,'Please enter 1 or 2.\n');
FLAG = input(' ');
if FLAG == 2
fprintf(1,'Input the file name in the form - drive:\\name.ext\n');
fprintf(1,'for example: A:\\OUTPUT.DTA\n');
NAME = input(' ','s');
OUP = fopen(NAME, 'wt');
else
OUP = 1;
end;
% STEP 1
for I = 1 : N
R(I) = A(I,N+1);
for J = 1 : N
R(I) = R(I)-A(I,J)*X1(J);
end;
end;
for I = 1 : N
W(I) = 0;
for J = 1 : N
W(I) = W(I)+CI(I,J)*R(J);
end;
end;
for I = 1 : N
V(I) = 0;
for J = 1 : N
V(I) = V(I)+CT(I,J)*W(J);
end;
end;
ALPHA = 0.0;
for I = 1 : N
ALPHA = ALPHA + W(I)*W(I);
end;
% Step 2
K = 1;
OK = FALSE;
% STEP 3
while (OK == FALSE) & (K <= NN)
% ERR is used to test accuracy - it measures the 2 norm
ERR = 0;
for I = 1 : N
ERR = ERR + V(I)*V(I);
end;
% STEP 4
if sqrt(ERR) < TOL
K = K -1;
OK = TRUE;
else
% Step 5
for I = 1 : N
U(I) = 0.0;
for J = 1 : N
U(I) = U(I)+A(I,J)*V(J);
end;
end;
S = 0.0;
for I = 1 : N
S = S + V(I)*U(I);
end;
T = ALPHA/S;
for I = 1 : N
X1(I) = X1(I)+T*V(I);
R(I) = R(I) - T*U(I);
end;
fprintf(OUP, 'The approximation :\n');
for I = 1 : N
fprintf(OUP, ' %11.8f', X1(I));
end;
fprintf(OUP, '\nafter %d iterations with\n', K);
fprintf(OUP, 'The residual vector is :\n');
for I = 1 : N
fprintf(OUP, ' %11.8f', R(I));
end;
fprintf(OUP,' \n');
for I = 1 : N
W(I) = 0.0;
for J = 1 : N
W(I) = W(I)+CI(I,J)*R(J);
end;
end;
BETA = 0.0;
for I = 1 : N
BETA = BETA + W(I)*W(I);
end;
ERR1 = sqrt(BETA);
% Step 6
if ERR1 <= TOL
ERR = 0.0;
for I = 1 : N
ERR = ERR + R(I)*R(I)
end;
if sqrt(ERR) < TOL
OK = TRUE;
end;
end;
if OK == FALSE
% Step 7
K = K + 1;
S = BETA/ALPHA;
for I = 1 : N
Z(I) = 0;
for J = 1 : N
Z(I) = Z(I) + CT(I,J)*W(J);
end;
end;
for I = 1 : N
V(I) = Z(I)+S*V(I);
end;
ALPHA = BETA;
end;
end;
end;
if OK == FALSE
% Step 8
fprintf(1,'Maximum Number of Iterations Exceeded.\n');
% procedure completed unsuccessfully
else
fprintf(OUP, 'CONJUGATE GRADIENT METHOD FOR LINEAR SYSTEMS\n\n');
fprintf(OUP, 'The solution vector is :\n');
for I = 1 : N
fprintf(OUP, ' %11.8f', X1(I));
end;
fprintf(OUP, '\nusing %d iterations with\n', K);
fprintf(OUP, 'Tolerance %.10e in infinity-norm\n', TOL);
fprintf(OUP, 'The residual vector is :\n');
for I = 1 : N
fprintf(OUP, ' %11.8f', R(I));
end;
fprintf(OUP,' \n');
if OUP ~= 1
fclose(OUP);
fprintf(1,'Output file %s created successfully \n',NAME);
end;
end;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -