⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bezier.cpp

📁 video linux conference
💻 CPP
字号:
/***************************************************************************** * bezier.cpp ***************************************************************************** * Copyright (C) 2003 VideoLAN * $Id: bezier.cpp 10101 2005-03-02 16:47:31Z robux4 $ * * Authors: Cyril Deguet     <asmax@via.ecp.fr> *          Olivier Teuli鑢e <ipkiss@via.ecp.fr> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111, USA. *****************************************************************************/#include <vlc/vlc.h>#include "bezier.hpp"#include <math.h>#ifndef HAVE_LRINTF#   define lrintf(a) (int)rint(a)#endifBezier::Bezier( intf_thread_t *p_intf, const vector<float> &rAbscissas,                const vector<float> &rOrdinates, Flag_t flag )    : SkinObject( p_intf ){    // Copy the control points coordinates    m_ptx.assign( rAbscissas.begin(), rAbscissas.end() );    m_pty.assign( rOrdinates.begin(), rOrdinates.end() );    // We expect m_ptx and m_pty to have the same size, of course    m_nbCtrlPt = m_ptx.size();    // Precalculate the factoriels    m_ft.push_back( 1 );    for( int i = 1; i < m_nbCtrlPt; i++ )    {        m_ft.push_back( i * m_ft[i - 1] );    }    // Calculate the first point    int oldx, oldy;    computePoint( 0, oldx, oldy );    m_leftVect.push_back( oldx );    m_topVect.push_back( oldy );    m_percVect.push_back( 0 );    // Calculate the other points    float percentage;    int cx, cy;    for( float j = 1; j <= MAX_BEZIER_POINT; j++ )    {        percentage = j / MAX_BEZIER_POINT;        computePoint( percentage, cx, cy );        if( ( flag == kCoordsBoth && ( cx != oldx || cy != oldy ) ) ||            ( flag == kCoordsX && cx != oldx ) ||            ( flag == kCoordsY && cy != oldy ) )        {            m_percVect.push_back( percentage );            m_leftVect.push_back( cx );            m_topVect.push_back( cy );            oldx = cx;            oldy = cy;        }    }    m_nbPoints = m_leftVect.size();    // If we have only one control point, we duplicate it    // This allows to simplify the algorithms used in the class    if( m_nbPoints == 1 )    {        m_leftVect.push_back( m_leftVect[0] );        m_topVect.push_back( m_topVect[0] );        m_percVect.push_back( 1 );        m_nbPoints = 2;   }    // Ensure that the percentage of the last point is always 1    m_percVect[m_nbPoints - 1] = 1;}float Bezier::getNearestPercent( int x, int y ) const{    int nearest = findNearestPoint( x, y );    return m_percVect[nearest];}float Bezier::getMinDist( int x, int y ) const{    int nearest = findNearestPoint( x, y );    return sqrt( (m_leftVect[nearest] - x) * (m_leftVect[nearest] - x) +                 (m_topVect[nearest] - y) * (m_topVect[nearest] - y) );}void Bezier::getPoint( float t, int &x, int &y ) const{    // Find the precalculated point whose percentage is nearest from t    int refPoint = 0;    float minDiff = fabs( m_percVect[0] - t );    // The percentages are stored in increasing order, so we can stop the loop    // as soon as 'diff' starts increasing    float diff;    while( refPoint < m_nbPoints &&           (diff = fabs( m_percVect[refPoint] - t )) <= minDiff )    {        refPoint++;        minDiff = diff;    }    // The searched point is then (refPoint - 1)    // We know that refPoint > 0 because we looped at least once    x = m_leftVect[refPoint - 1];    y = m_topVect[refPoint - 1];}int Bezier::getWidth() const{    int width = 0;    for( int i = 0; i < m_nbPoints; i++ )    {        if( m_leftVect[i] >= width )        {            width = m_leftVect[i] + 1;        }    }    return width;}int Bezier::getHeight() const{    int height = 0;    for( int i = 0; i < m_nbPoints; i++ )    {        if( m_topVect[i] >= height )        {            height = m_topVect[i] + 1;        }    }    return height;}int Bezier::findNearestPoint( int x, int y ) const{    // The distance to the first point is taken as the reference    int refPoint = 0;    int minDist = (m_leftVect[0] - x) * (m_leftVect[0] - x) +                  (m_topVect[0] - y) * (m_topVect[0] - y);    int dist;    for( int i = 1; i < m_nbPoints; i++ )    {        dist = (m_leftVect[i] - x) * (m_leftVect[i] - x) +               (m_topVect[i] - y) * (m_topVect[i] - y);        if( dist < minDist )        {            minDist = dist;            refPoint = i;        }    }    return refPoint;}void Bezier::computePoint( float t, int &x, int &y ) const{    // See http://astronomy.swin.edu.au/~pbourke/curves/bezier/ for a simple    // explanation of the algorithm    float xPos = 0;    float yPos = 0;    float coeff;    for( int i = 0; i < m_nbCtrlPt; i++ )    {        coeff = computeCoeff( i, m_nbCtrlPt - 1, t );        xPos += m_ptx[i] * coeff;        yPos += m_pty[i] * coeff;    }    x = lrintf(xPos);    y = lrintf(yPos);}inline float Bezier::computeCoeff( int i, int n, float t ) const{    return (power( t, i ) * power( 1 - t, (n - i) ) *        (m_ft[n] / m_ft[i] / m_ft[n - i]));}inline float Bezier::power( float x, int n ) const{    if( n > 0 )        return x * power( x, n - 1);    else        return 1;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -