⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 disasm.c

📁 CC386 is a general-purpose 32-bit C compiler. It is not an optimizing compiler but given that the co
💻 C
📖 第 1 页 / 共 2 页
字号:
/* disasm.c   where all the _work_ gets done in the Netwide Disassembler
 *
 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
 * Julian Hall. All rights reserved. The software is
 * redistributable under the licence given in the file "Licence"
 * distributed in the NASM archive.
 *
 * initial version 27/iii/95 by Simon Tatham
 */

#include <stdio.h>
#include <string.h>

#include "nasm.h"
#include "disasm.h"
#include "sync.h"
#include "insns.h"

#include "names.c"

extern struct itemplate **itable[];

/*
 * Flags that go into the `segment' field of `insn' structures
 * during disassembly.
 */
#define SEG_RELATIVE 1
#define SEG_32BIT 2
#define SEG_RMREG 4
#define SEG_DISP8 8
#define SEG_DISP16 16
#define SEG_DISP32 32
#define SEG_NODISP 64
#define SEG_SIGNED 128

static int whichreg(long regflags, int regval) 
{
#include "regdis.c"

    if (!(REG_AL & ~regflags))
	return R_AL;
    if (!(REG_AX & ~regflags))
	return R_AX;
    if (!(REG_EAX & ~regflags))
	return R_EAX;
    if (!(REG_DL & ~regflags))
	return R_DL;
    if (!(REG_DX & ~regflags))
	return R_DX;
    if (!(REG_EDX & ~regflags))
	return R_EDX;
    if (!(REG_CL & ~regflags))
	return R_CL;
    if (!(REG_CX & ~regflags))
	return R_CX;
    if (!(REG_ECX & ~regflags))
	return R_ECX;
    if (!(FPU0 & ~regflags))
	return R_ST0;
    if (!(REG_CS & ~regflags))
        return (regval == 1) ? R_CS : 0;
    if (!(REG_DESS & ~regflags))
	return (regval == 0 || regval == 2 || regval == 3 ? sreg[regval] : 0);
    if (!(REG_FSGS & ~regflags))
	return (regval == 4 || regval == 5 ? sreg[regval] : 0);
    if (!(REG_SEG67 & ~regflags))
	return (regval == 6 || regval == 7 ? sreg[regval] : 0);

    /* All the entries below look up regval in an 8-entry array */
    if (regval < 0 || regval > 7)
	return 0;

    if (!((REGMEM|BITS8) & ~regflags))
	return reg8[regval];
    if (!((REGMEM|BITS16) & ~regflags))
	return reg16[regval];
    if (!((REGMEM|BITS32) & ~regflags))
	return reg32[regval];
    if (!(REG_SREG & ~regflags))
	return sreg[regval];
    if (!(REG_CREG & ~regflags))
	return creg[regval];
    if (!(REG_DREG & ~regflags))
	return dreg[regval];
    if (!(REG_TREG & ~regflags))
	return treg[regval];
    if (!(FPUREG & ~regflags))
	return fpureg[regval];
    if (!(MMXREG & ~regflags))
	return mmxreg[regval];
    if (!(XMMREG & ~regflags))
	return xmmreg[regval];

    return 0;
}

static const char *whichcond(int condval) 
{
    static int conds[] = {
	C_O, C_NO, C_C, C_NC, C_Z, C_NZ, C_NA, C_A,
	C_S, C_NS, C_PE, C_PO, C_L, C_NL, C_NG, C_G
    };
    return conditions[conds[condval]];
}

/*
 * Process an effective address (ModRM) specification.
 */
static unsigned char *do_ea (unsigned char *data, int modrm, int asize,
			     int segsize, operand *op) 
{
    int mod, rm, scale, index, base;

    mod = (modrm >> 6) & 03;
    rm = modrm & 07;

    if (mod == 3) {		       /* pure register version */
	op->basereg = rm;
	op->segment |= SEG_RMREG;
	return data;
    }

    op->addr_size = 0;

    if (asize == 16) {
	/*
	 * <mod> specifies the displacement size (none, byte or
	 * word), and <rm> specifies the register combination.
	 * Exception: mod=0,rm=6 does not specify [BP] as one might
	 * expect, but instead specifies [disp16].
	 */
	op->indexreg = op->basereg = -1;
	op->scale = 1;		       /* always, in 16 bits */
	switch (rm) {
	  case 0: op->basereg = R_BX; op->indexreg = R_SI; break;
	  case 1: op->basereg = R_BX; op->indexreg = R_DI; break;
	  case 2: op->basereg = R_BP; op->indexreg = R_SI; break;
	  case 3: op->basereg = R_BP; op->indexreg = R_DI; break;
	  case 4: op->basereg = R_SI; break;
	  case 5: op->basereg = R_DI; break;
	  case 6: op->basereg = R_BP; break;
	  case 7: op->basereg = R_BX; break;
	}
	if (rm == 6 && mod == 0) {     /* special case */
	    op->basereg = -1;
	    if (segsize != 16)
		op->addr_size = 16;
	    mod = 2;		       /* fake disp16 */
	}
	switch (mod) {
	  case 0:
	    op->segment |= SEG_NODISP;
	    break;
	  case 1:
	    op->segment |= SEG_DISP8;
	    op->offset = (signed char) *data++;
	    break;
	  case 2:
	    op->segment |= SEG_DISP16;
	    op->offset = *data++;
	    op->offset |= ((unsigned) *data++) << 8;
	    break;
	}
	return data;
    } else {
	/*
	 * Once again, <mod> specifies displacement size (this time
	 * none, byte or *dword*), while <rm> specifies the base
	 * register. Again, [EBP] is missing, replaced by a pure
	 * disp32 (this time that's mod=0,rm=*5*). However, rm=4
	 * indicates not a single base register, but instead the
	 * presence of a SIB byte...
	 */
	op->indexreg = -1;
	switch (rm) {
	  case 0: op->basereg = R_EAX; break;
	  case 1: op->basereg = R_ECX; break;
	  case 2: op->basereg = R_EDX; break;
	  case 3: op->basereg = R_EBX; break;
	  case 5: op->basereg = R_EBP; break;
	  case 6: op->basereg = R_ESI; break;
	  case 7: op->basereg = R_EDI; break;
	}
	if (rm == 5 && mod == 0) {
	    op->basereg = -1;
	    if (segsize != 32)
		op->addr_size = 32;
	    mod = 2;		       /* fake disp32 */
	}
	if (rm == 4) {		       /* process SIB */
	    scale = (*data >> 6) & 03;
	    index = (*data >> 3) & 07;
	    base = *data & 07;
	    data++;

	    op->scale = 1 << scale;
	    switch (index) {
	      case 0: op->indexreg = R_EAX; break;
	      case 1: op->indexreg = R_ECX; break;
	      case 2: op->indexreg = R_EDX; break;
	      case 3: op->indexreg = R_EBX; break;
	      case 4: op->indexreg = -1; break;
	      case 5: op->indexreg = R_EBP; break;
	      case 6: op->indexreg = R_ESI; break;
	      case 7: op->indexreg = R_EDI; break;
	    }

	    switch (base) {
	      case 0: op->basereg = R_EAX; break;
	      case 1: op->basereg = R_ECX; break;
	      case 2: op->basereg = R_EDX; break;
	      case 3: op->basereg = R_EBX; break;
	      case 4: op->basereg = R_ESP; break;
	      case 6: op->basereg = R_ESI; break;
	      case 7: op->basereg = R_EDI; break;
	      case 5:
		if (mod == 0) {
		    mod = 2;
		    op->basereg = -1;
		} else
		    op->basereg = R_EBP;
		break;
	    }
	}
	switch (mod) {
	  case 0:
	    op->segment |= SEG_NODISP;
	    break;
	  case 1:
	    op->segment |= SEG_DISP8;
	    op->offset = (signed char) *data++;
	    break;
	  case 2:
	    op->segment |= SEG_DISP32;
	    op->offset = *data++;
	    op->offset |= ((unsigned) *data++) << 8;
	    op->offset |= ((long) *data++) << 16;
	    op->offset |= ((long) *data++) << 24;
	    break;
	}
	return data;
    }
}

/*
 * Determine whether the instruction template in t corresponds to the data
 * stream in data. Return the number of bytes matched if so.
 */
static int matches (struct itemplate *t, unsigned char *data, int asize,
		    int osize, int segsize, int rep, insn *ins) 
{
    unsigned char * r = (unsigned char *)(t->code);
    unsigned char * origdata = data;
    int           a_used = FALSE, o_used = FALSE;
    int           drep = 0;

    if ( rep == 0xF2 )
      drep = P_REPNE;
    else if ( rep == 0xF3 )
      drep = P_REP;

    while (*r) 
    {
	int c = *r++;
	if (c >= 01 && c <= 03) {
	    while (c--)
		if (*r++ != *data++)
		    return FALSE;
	}
	if (c == 04) {
	    switch (*data++) {
	      case 0x07: ins->oprs[0].basereg = 0; break;
	      case 0x17: ins->oprs[0].basereg = 2; break;
	      case 0x1F: ins->oprs[0].basereg = 3; break;
	      default: return FALSE;
	    }
	}
	if (c == 05) {
	    switch (*data++) {
	      case 0xA1: ins->oprs[0].basereg = 4; break;
	      case 0xA9: ins->oprs[0].basereg = 5; break;
	      default: return FALSE;
	    }
	}
	if (c == 06) {
	    switch (*data++) {
	      case 0x06: ins->oprs[0].basereg = 0; break;
	      case 0x0E: ins->oprs[0].basereg = 1; break;
	      case 0x16: ins->oprs[0].basereg = 2; break;
	      case 0x1E: ins->oprs[0].basereg = 3; break;
	      default: return FALSE;
	    }
	}
	if (c == 07) {
	    switch (*data++) {
	      case 0xA0: ins->oprs[0].basereg = 4; break;
	      case 0xA8: ins->oprs[0].basereg = 5; break;
	      default: return FALSE;
	    }
	}
	if (c >= 010 && c <= 012) {
	    int t = *r++, d = *data++;
	    if (d < t || d > t+7)
		return FALSE;
	    else {
		ins->oprs[c-010].basereg = d-t;
		ins->oprs[c-010].segment |= SEG_RMREG;
	    }
	}
	if (c == 017)
	    if (*data++)
		return FALSE;
	if (c >= 014 && c <= 016) {
	    ins->oprs[c-014].offset = (signed char) *data++;
	    ins->oprs[c-014].segment |= SEG_SIGNED;
	}
	if (c >= 020 && c <= 022)
	    ins->oprs[c-020].offset = *data++;
	if (c >= 024 && c <= 026)
	    ins->oprs[c-024].offset = *data++;
	if (c >= 030 && c <= 032) {
	    ins->oprs[c-030].offset = *data++;
	    ins->oprs[c-030].offset |= (((unsigned) *data++) << 8);
	}
	if (c >= 034 && c <= 036) {
	    ins->oprs[c-034].offset = *data++;
	    ins->oprs[c-034].offset |= (((unsigned) *data++) << 8);
	    if (osize == 32) {
		ins->oprs[c-034].offset |= (((long) *data++) << 16);
		ins->oprs[c-034].offset |= (((long) *data++) << 24);
	    }
	    if (segsize != asize)
		ins->oprs[c-034].addr_size = asize;
	}
	if (c >= 040 && c <= 042) {
	    ins->oprs[c-040].offset = *data++;
	    ins->oprs[c-040].offset |= (((unsigned) *data++) << 8);
	    ins->oprs[c-040].offset |= (((long) *data++) << 16);
	    ins->oprs[c-040].offset |= (((long) *data++) << 24);
	}
	if (c >= 044 && c <= 046) {
	    ins->oprs[c-044].offset = *data++;
	    ins->oprs[c-044].offset |= (((unsigned) *data++) << 8);
	    if (asize == 32) {
		ins->oprs[c-044].offset |= (((long) *data++) << 16);
		ins->oprs[c-044].offset |= (((long) *data++) << 24);
	    }
	    if (segsize != asize)
		ins->oprs[c-044].addr_size = asize;
	}
	if (c >= 050 && c <= 052) {
	    ins->oprs[c-050].offset = (signed char) *data++;
	    ins->oprs[c-050].segment |= SEG_RELATIVE;
	}
	if (c >= 060 && c <= 062) {
	    ins->oprs[c-060].offset = *data++;
	    ins->oprs[c-060].offset |= (((unsigned) *data++) << 8);
	    ins->oprs[c-060].segment |= SEG_RELATIVE;
	    ins->oprs[c-060].segment &= ~SEG_32BIT;
	}
	if (c >= 064 && c <= 066) {
	    ins->oprs[c-064].offset = *data++;
	    ins->oprs[c-064].offset |= (((unsigned) *data++) << 8);
	    if (osize == 32) {
		ins->oprs[c-064].offset |= (((long) *data++) << 16);
		ins->oprs[c-064].offset |= (((long) *data++) << 24);
		ins->oprs[c-064].segment |= SEG_32BIT;
	    } else
		ins->oprs[c-064].segment &= ~SEG_32BIT;
	    ins->oprs[c-064].segment |= SEG_RELATIVE;
	    if (segsize != osize) {
	        ins->oprs[c-064].type =
		    (ins->oprs[c-064].type & NON_SIZE)
		    | ((osize == 16) ? BITS16 : BITS32);
	    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -