📄 lagrange.cpp
字号:
#include "iostream.h"
#include "math.h"
typedef double (*FUN) (double *); // 自定义的函数指针类型
//函数声明
void comput_grad(double (*pf)(double *x), int n, double *point, double *grad); //计算梯度
double line_search(double (*pf)(double *x), int n, double *start, double *direction); //解析法线搜索
double DFP(double (*pf)(double *x), int n, double *min_point); //无约束变尺度法
double LAGRANGE(FUN obj,FUN *pG_group,FUN *pH_group,int var_num,int g_num,int h_num,double *min_point);
////////////////////////////////////////////////////////////////////////////////
//目标函数
double obj(double *x)
{
return 3*(x[0]-1)*(x[0]-1)+2*(x[1]-2)*(x[1]-2)+(x[2]-3)*(x[2]-3);
}
//不等式约束
double g1(double *x)
{
return -x[0];
}
double g2(double *x)
{
return -x[1];
}
double g3(double *x)
{
return -x[2];
}
//等式约束
double h1(double *x)
{
return x[0]+x[1]+x[2]-1;
}
double h2(double *x)
{
return -2*x[0]+3*x[1]+x[2]-2;
}
//前面带下划线的变量 注意使用
int _h_num=2; //等式约束数目
int _g_num=3; //不等式约束数目
double *_u=new double[_g_num]; //惩罚因子
double *_lamda=new double[_h_num]; //lagrange乘子
double _M;
FUN _H[2]={h1,h2};
FUN _G[3]={g1,g2,g3}; //
///////////////////////////////////////////////////////////////////////////////////////
//LAGRANGE乘子法用到的函数
//
double newObj(double *x)
{
double tmp=0.0;
int i;
tmp=tmp+obj(x);
for(i=0;i<_h_num;i++)
{
tmp=tmp+_lamda[i]*_H[i](x)+0.5*_M*_H[i](x)*_H[i](x);
}
for(i=0;i<_g_num;i++)
{
if ( (_G[i](x)+_u[i]/_M)>0 )
tmp=tmp+0.5*_M*(_G[i](x)+_u[i]/_M)*(_G[i](x)+_u[i]/_M);
}
return tmp;
}
/////////////////////////////////////////////////////////////////////////////////////////
//梯度计算模块
//参数:指向目标函数的指针,变量个数,求梯度的点,结果
void comput_grad(double (*pf)(double *x),
int n,
double *point,
double *grad)
{
double h=1E-3;
int i;
double *temp;
temp = new double[n];
for(i=1;i<=n;i++)
{
temp[i-1]=point[i-1];
}
for(i=1;i<=n;i++)
{
temp[i-1]+=0.5*h;
grad[i-1]=4*pf(temp)/(3*h);
temp[i-1]-=h;
grad[i-1]-=4*pf(temp)/(3*h);
temp[i-1]+=(3*h/2);
grad[i-1]-=(pf(temp)/(6*h));
temp[i-1]-=(2*h);
grad[i-1]+=(pf(temp)/(6*h));
temp[i-1]=point[i-1];
}
delete[] temp;
}
/////////////////////////////////////////////////////////////////////////////////////////
//一维搜索模块
//参数:指向目标函数的指针,变量个数,出发点,搜索方向
//返回:最优步长
double line_search(
double (*pf)(double *x),
int n,
double *start,
double *direction)
{
int i;
double step=0.001;
double a=0,value_a,diver_a;
double b,value_b,diver_b;
double t,value_t,diver_t;
double s,z,w;
double *grad,*temp_point;
grad=new double[n];
temp_point=new double[n];
comput_grad(pf,n,start,grad);
diver_a=0;
for(i=1;i<=n;i++)
diver_a=diver_a+grad[i-1]*direction[i-1];
do
{
b=a+step;
for(i=1;i<=n;i++)
temp_point[i-1]=start[i-1]+b*direction[i-1];
comput_grad(pf,n,temp_point,grad);
diver_b=0;
for(i=1;i<=n;i++)
diver_b=diver_b+grad[i-1]*direction[i-1];
if( fabs(diver_b)<1E-10 )
{
delete[] grad;
delete[] temp_point;
return(b);
}
if( diver_b<-1E-15 )
{
a=b;
diver_a=diver_b;
step=2*step;
}
}while( diver_b<=1E-15 );
for(i=1;i<=n;i++)
temp_point[i-1]=start[i-1]+a*direction[i-1];
value_a=(*pf)(temp_point);
for(i=1;i<=n;i++)
temp_point[i-1]=start[i-1]+b*direction[i-1];
value_b=(*pf)(temp_point);
do
{
s=3*(value_b-value_a)/(b-a);
z=s-diver_a-diver_b;
w=sqrt( fabs(z*z-diver_a*diver_b) ); //////////////////!!!!!!!!!!!!!!!!!!!!!!
t=a+(w-z-diver_a)*(b-a)/(diver_b-diver_a+2*w);
value_b=(*pf)(temp_point);
for(i=1;i<=n;i++)
temp_point[i-1]=start[i-1]+t*direction[i-1];
value_t=(*pf)(temp_point);
comput_grad(pf,n,temp_point,grad);
diver_t=0;
for(i=1;i<=n;i++)
diver_t=diver_t+grad[i-1]*direction[i-1];
if(diver_t>1E-6)
{
b=t;
value_b=value_t;
diver_b=diver_t;
}
else if(diver_t<-1E-6)
{
a=t;
value_a=value_t;
diver_a=diver_t;
}
else break;
}while( (fabs(diver_t)>=1E-6) && (fabs(b-a)>1E-6) );
delete[] grad;
delete[] temp_point;
return(t);
}
/////////////////////////////////////////////////////////////////////////////////////////
//无约束变尺度法DFP函数声明
//
//参数:pf指向目标函数的指针,n变量个数,min_point接受初始点、存放结果
//返回:极小点处函数值
//
double DFP(
double (*pf)(double *x),
int n,
double *min_point
)
{
int i,j;
int k=0;
double e=1E-6;
double g_norm;
double *g0=new double[n]; //梯度
double *g1=new double[n];
double *dg=new double[n];
double *p=new double[n]; //搜索方向 =-g
double t; //一维搜索步长
double *x0=new double[n];
double *x1=new double[n];
double *dx=new double[n];
double **H=new double*[n];
for (i=0; i<n; i++) H[i] = new double[n];
double **tempH=new double*[n];
for (i=0; i<n; i++) tempH[i] = new double[n];
double *gH=new double[n];
double *Hg=new double[n];
double num1;
double num2;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
if(i==j) H[i][j]=1.0; // H0=I
else H[i][j]=0.0;
tempH[i][j]=0.0;
}
for(i=0;i<n;i++)
x0[i]=min_point[i];
comput_grad(pf,n,x0,g0);
g_norm=0.0;
for(i=0;i<n;i++) g_norm=g_norm+g0[i]*g0[i];
g_norm=sqrt(g_norm);
if (g_norm<e)
{
for(i=0;i<n;i++) min_point[i]=x0[i];
delete[] g0;
delete[] g1;
delete[] dg;
delete[] p;
delete[] x0;
delete[] x1;
delete[] dx;
for (i=0; i<n; i++) delete[] H[i];
delete []H;
for (i=0; i<n; i++) delete[] tempH[i];
delete []tempH;
delete[] gH;
delete[] Hg;
return pf(min_point);
}
for(i=0;i<n;i++) p[i]=-g0[i];
do
{
t=line_search(pf,n,x0,p);
for(i=0;i<n;i++) x1[i]=x0[i]+t*p[i];
comput_grad(pf,n,x1,g1);
g_norm=0.0;
for(i=0;i<n;i++) g_norm=g_norm+g1[i]*g1[i];
g_norm=sqrt(g_norm);
//cout<<k<<" "<<x0[0]<<" "<<x0[1]<<" "<<g_norm<<"\n";
if (g_norm<e)
{
for(i=0;i<n;i++) min_point[i]=x1[i];
delete[] g0;
delete[] g1;
delete[] dg;
delete[] p;
delete[] x0;
delete[] x1;
delete[] dx;
for (i=0; i<n; i++) delete[] H[i];
delete []H;
for (i=0; i<n; i++) delete[] tempH[i];
delete []tempH;
delete[] gH;
delete[] Hg;
return pf(min_point);
}
for(i=0;i<n;i++)
{
dx[i]=x1[i]-x0[i];
dg[i]=g1[i]-g0[i];
}
//////////////////求Hk+1的矩阵运算
//g*H,H*g
for(i=0;i<n;i++)
{
gH[i]=0.0;
Hg[i]=0.0;
}
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
gH[i]=gH[i]+dg[j]*H[j][i];
//Hg[i]=Hg[i]+H[i][j]*dg[j];
Hg[i]=gH[i];
}
}
//num1,num2
num1=0.0;
num2=0.0;
for(i=0;i<n;i++)
{
num1=num1+dx[i]*dg[i];
num2=num2+gH[i]*dg[i];
}
//tempH[i][j]
for(i=0;i<n;i++)
for(j=0;j<n;j++)
tempH[i][j]=0.0;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
tempH[i][j]=tempH[i][j]+H[i][j];
tempH[i][j]=tempH[i][j]+dx[i]*dx[j]/num1;
tempH[i][j]=tempH[i][j]-Hg[i]*gH[j]/num2;
}
}
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
H[i][j]=tempH[i][j];
}
}
/////////////////////////////
//P
for(i=0;i<n;i++) p[i]=0.0;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
p[i]=p[i]-H[i][j]*g1[j];
}
}
for(i=0;i<n;i++)
{
g0[i]=g1[i];
x0[i]=x1[i];
}
k=k+1;
}while(g_norm>e);
for(i=0;i<n;i++) min_point[i]=x1[i];
delete[] g0;
delete[] g1;
delete[] dg;
delete[] p;
delete[] x0;
delete[] x1;
delete[] dx;
for (i=0; i<n; i++) delete[] H[i];
delete []H;
for (i=0; i<n; i++) delete[] tempH[i];
delete []tempH;
delete[] gH;
delete[] Hg;
return pf(min_point);
}
//////////////////////////////////////////////////////////////////////////////////////////
//lagrange 乘子法
double LAGRANGE(
FUN obj,
FUN *pG_group,
FUN *pH_group,
int var_num,
int g_num,
int h_num,
double *min_point
)
{
double *X=new double[var_num];
double alpha;
double err;
double e;
int i;
int k;
//初始化
for(i=0;i<var_num;i++) X[i]=1;
for(i=0;i<g_num;i++) _u[i]=1;
for(i=0;i<h_num;i++) _lamda[i]=1;
_M=1;
alpha=2;
e=1E-5;
k=0;
do{
DFP(newObj, var_num, X);
////////计算error
err=0.0;
for(i=0;i<g_num;i++)
{
if ( _G[i](X)>(-_u[i]/_M) ) err=err+_G[i](X)*_G[i](X);
else err=err+(_u[i]/_M)*(_u[i]/_M);
}
for(i=0;i<h_num;i++) err=err+_H[i](X)*_H[i](X);
//更新参数//////////////
for(i=0;i<g_num;i++)
{
if( (_u[i]+_M*_G[i](X)) >0 ) _u[i]=_u[i]+_M*_G[i](X);
else _u[i]=0;
}
for(i=0;i<h_num;i++) _lamda[i]=_lamda[i]+_M*_H[i](X);
_M=alpha*_M;
k=k+1;
//cout<<k<<" "<<err<<"\n";
}while(err>e);
for(i=0;i<var_num;i++) min_point[i]=X[i];
delete[] X;
delete[] _u;
delete[] _lamda;
return obj(min_point);
}
//////////////////////////////////////////////////////
void main()
{
int var_num=3;
double min_point[3]={0,0,0};
double min=LAGRANGE(obj,_G,_H,var_num,_g_num,_h_num,min_point);
cout<<min_point[0]<<" "<<min_point[1]<<" "<<min_point[2]<<" \n";
cout<<min;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -