⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 paviani2.pro~orig

📁 sqp程序包。用sqp算法实现非线性约束的优化求解
💻 PRO~ORIG
字号:
donlp2, v3, 05/29/98, copyright P. SpellucciThu Feb 24 16:55:15 2000paviani2     n=        24    nh=        14    ng=        32  epsx= 1.000e-05 sigsm= 1.490e-08startvalue  4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   4.0000000e-02   eps=  2.22e-16  tol= 1.98e-323 del0=  5.00e-03 delm=  5.00e-09 tau0=  1.00e-01  tau=  1.00e-01   sd=  1.00e-01   sw=  3.67e-11  rho=  1.00e-06 rho1=  1.00e-10 scfm=  1.00e+04  c1d=  1.00e-02 epdi=  0.00e+00  nre=        24 anal=         1 termination reason: KT-conditions satisfied, no further correction computed evaluations of f                           76 evaluations of grad f                      36 evaluations of constraints               2117 evaluations of grads of constraints       603 final scaling of objective           1.000000e+00 norm of grad(f)                      9.992315e+01 lagrangian violation                 1.769254e-11 feasibility violation                2.396550e-09 dual feasibility violation           0.000000e+00 optimizer runtime sec's              1.890000e+00 optimal value of f =   5.56580425853816e+00 optimal solution  x =  0.00000000000000e+00  1.07247789891528e-01  1.11389485361845e-01  0.00000000000000e+00  0.00000000000000e+00  6.25065005408248e-15  7.55407751162556e-02  0.00000000000000e+00  0.00000000000000e+00  6.73569879766550e-15  0.00000000000000e+00  1.11951974635090e-02  0.00000000000000e+00  1.92752210108476e-01  2.88610514638161e-01  3.00557430450779e-16  2.35654484106718e-16  1.36393467148558e-15  2.12857805376902e-01  0.00000000000000e+00  0.00000000000000e+00  7.64347164122064e-17  1.70224024443253e-11  4.06222026310934e-04  multipliers are relativ to scf=1  nr.    constraint      normgrad (or 1)   multiplier    1   0.0000000e+00    1.3738053e+01    1.3265189e+00    2   1.7577328e-11    3.5135143e+00    1.0759190e+00    3  -1.1747159e-09    5.0175048e+00    8.3809015e-01    4   1.8704816e-16    1.0000000e+00    2.3046011e+01    5   1.6667180e-16    3.4692812e+00   -5.3873028e+00    6  -4.2292098e-15    1.0000000e+00    9.8375809e+01    7   1.1501097e-09    4.3139665e+00    7.8840547e-01    8   0.0000000e+00    1.0852027e+00    4.6904100e+00    9   0.0000000e+00    1.0000000e+00    9.9249755e+00   10  -6.9261302e-15    1.4682526e+00    1.2303461e+01   11   3.1594782e-11    1.8582247e+00    2.9957569e+00   12  -2.2502832e-11    1.4229130e+00    2.9044921e+00   13   2.5091040e-14    4.8989795e+00    5.6611831e+00   14   1.3322676e-14    7.2631642e+00   -5.7078910e-02   15   0.0000000e+00    1.0000000e+02    1.4777095e-01   16   1.0724779e+01    1.0000000e+02    0.0000000e+00   17   1.1138949e+01    1.0000000e+02    0.0000000e+00   18   0.0000000e+00    1.0000000e+02    2.4422724e-01   19   0.0000000e+00    1.0000000e+02    0.0000000e+00   20   6.2506501e-13    1.0000000e+02    1.2501816e+00   21   7.5540775e+00    1.0000000e+02    0.0000000e+00   22   0.0000000e+00    1.0000000e+02    3.5923901e-02   23   0.0000000e+00    1.0000000e+02    5.1892290e-02   24   6.7356988e-13    1.0000000e+02    2.2427781e-01   25   0.0000000e+00    1.0000000e+02    2.4138143e-03   26   1.1195197e+00    1.0000000e+02    0.0000000e+00   27   0.0000000e+00    1.0000000e+02    0.0000000e+00   28   1.9275221e+01    1.0000000e+02    0.0000000e+00   29   2.8861051e+01    1.0000000e+02    0.0000000e+00   30   3.0055743e-14    1.0000000e+02    0.0000000e+00   31   2.3565448e-14    1.0000000e+02    2.4236532e-01   32   1.3639347e-13    1.0000000e+02    0.0000000e+00   33   2.1285781e+01    1.0000000e+02    0.0000000e+00   34   0.0000000e+00    1.0000000e+02    0.0000000e+00   35   0.0000000e+00    1.0000000e+02    0.0000000e+00   36   7.6434716e-15    1.0000000e+02    0.0000000e+00   37   1.7022402e-09    1.0000000e+02    0.0000000e+00   38   4.0622203e-02    1.0000000e+02    0.0000000e+00   39   1.0000000e-01    1.3537445e+00    0.0000000e+00   40   3.1641356e-15    1.7204651e+00    6.3250395e-01   41   4.1078252e-15    2.0591260e+00    1.0525977e+00   42   1.1601420e-02    1.6798057e+00    0.0000000e+00   43   6.0000000e-01    1.0000000e+00    0.0000000e+00   44   3.0000000e-01    1.0000000e+00    0.0000000e+00   45   3.0537325e+01    1.0000000e+00    0.0000000e+00   46   6.9462675e+01    1.0000000e+00    0.0000000e+00 evaluations of restrictions and their gradients (   144,    39) (   138,    39) (   126,    39) (   102,    39) (   102,    39) (   102,    39) (   102,    39) (    96,    39) (    96,    39) (    96,    39) (    96,    39) (    96,    39) (    96,    39) (    86,    39) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (    81,    15) (    81,    19) (    81,     7) (    80,    16) (    79,     0) (    79,     0) (    79,     0) (    79,     0)last estimate of condition of active gradients  1.420e+02last estimate of condition of approx. hessian   1.000e+00iterative steps total              38# of restarts                       2# of full regular updates          17# of updates                       33# of full regularized SQP-steps    34

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -