⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hs85orig.pro~orig

📁 sqp程序包。用sqp算法实现非线性约束的优化求解
💻 PRO~ORIG
字号:
donlp2, v3, 05/29/98, copyright P. SpellucciThu Feb 24 16:53:07 2000hs85orig     n=         5    nh=         0    ng=        48  epsx= 1.000e-05 sigsm= 1.490e-08startvalue  9.0000000e+02   8.0000000e+01   1.1500000e+02   2.6700000e+02   2.7000000e+01   eps=  2.22e-16  tol= 1.98e-323 del0=  1.00e+00 delm=  1.00e-06 tau0=  1.00e+00  tau=  1.00e-01   sd=  1.00e-01   sw=  3.67e-11  rho=  1.00e-06 rho1=  1.00e-10 scfm=  1.00e+04  c1d=  1.00e-02 epdi=  0.00e+00  nre=         5 anal=         1 termination reason: KT-conditions satisfied, no further correction computed evaluations of f                          113 evaluations of grad f                      47 evaluations of constraints               5675 evaluations of grads of constraints       231 final scaling of objective           1.000000e+04 norm of grad(f)                      2.714595e-02 lagrangian violation                 3.673501e-17 feasibility violation                1.623590e-12 dual feasibility violation           0.000000e+00 optimizer runtime sec's              2.200000e-01 optimal value of f =  -1.90515525853475e+00 optimal solution  x =  7.05174537070046e+02  6.86000000000003e+01  1.02900000000001e+02  2.82324931593659e+02  3.75841164253741e+01  multipliers are relativ to scf=1  nr.    constraint      normgrad (or 1)   multiplier    1  -1.0089707e-12    1.8027756e+00    1.7647742e-02    2   8.1790353e+01    1.0000000e+00    0.0000000e+00    3  -6.1461947e-13    1.0000000e+00    2.8562353e-01    4   7.1000272e-10    3.0209507e+00    1.5074284e-04    5   1.7337243e-12    1.4142136e+00    2.1541691e-02    6   2.9331595e-01    1.0000000e+00    0.0000000e+00    7   9.4075253e-02    1.0000000e+00    0.0000000e+00    8   1.7844298e+00    1.0000000e+00    0.0000000e+00    9   3.3768448e+02    1.0000000e+00    0.0000000e+00   10   1.3168955e+02    1.0000000e+00    0.0000000e+00   11   1.0081273e+00    1.0000000e+00    0.0000000e+00   12   1.0113580e-03    1.0000000e+00    0.0000000e+00   13   4.6616183e+01    1.0000000e+00    0.0000000e+00   14   4.7152061e+01    1.0000000e+00    0.0000000e+00   15   1.8797290e+02    1.0000000e+00    0.0000000e+00   16   1.3924565e-01    1.0000000e+00    0.0000000e+00   17   1.8596858e+03    1.0000000e+00    0.0000000e+00   18   5.8500391e+03    1.0000000e+00    0.0000000e+00   19   1.8271095e-01    1.0000000e+00    0.0000000e+00   20   6.8915670e+04    1.0000000e+00    0.0000000e+00   21   9.2754947e+06    1.0000000e+00    0.0000000e+00   22   1.9213000e+02    1.0000000e+00    0.0000000e+00   23   1.0358684e+03    1.0000000e+00    0.0000000e+00   24   2.3660925e+01    1.0000000e+00    0.0000000e+00   25   4.4957257e+02    1.0000000e+00    0.0000000e+00   26   2.3932052e+02    1.0000000e+00    0.0000000e+00   27   1.3326545e+02    1.0000000e+00    0.0000000e+00   28   4.4258727e+00    1.0000000e+00    0.0000000e+00   29   7.4988642e-02    1.0000000e+00    0.0000000e+00   30   1.1875982e+02    1.0000000e+00    0.0000000e+00   31   3.1625994e+02    1.0000000e+00    0.0000000e+00   32   3.2924110e+02    1.0000000e+00    0.0000000e+00   33   5.1823575e+02    1.0000000e+00    0.0000000e+00   34   3.1519022e+02    1.0000000e+00    0.0000000e+00   35   1.2032599e+04    1.0000000e+00    0.0000000e+00   36   3.8599998e+06    1.0000000e+00    0.0000000e+00   37   2.3283064e-09    7.6264659e+02    3.4209217e-05   38   6.7900255e+04    1.0000000e+00    0.0000000e+00   39   7.5973707e-01    1.0000000e+00    0.0000000e+00   40   2.9842795e-13    1.0000000e+00    0.0000000e+00   41   1.0290000e+02    1.0000000e+00    0.0000000e+00   42   8.9324932e+01    1.0000000e+00    0.0000000e+00   43   1.2584116e+01    1.0000000e+00    0.0000000e+00   44   2.0121096e+02    1.0000000e+00    0.0000000e+00   45   2.2028000e+02    1.0000000e+00    0.0000000e+00   46   3.1850000e+01    1.0000000e+00    0.0000000e+00   47   4.7716684e+00    1.0000000e+00    0.0000000e+00   48   4.6614684e+01    1.0000000e+00    0.0000000e+00 evaluations of restrictions and their gradients (   213,    34) (   212,     0) (   212,    46) (   205,    16) (   144,    43) (   143,     0) (   143,     5) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,    47) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,    11) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,    24) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,     0) (   143,     5) (   113,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0)last estimate of condition of active gradients  1.066e+03last estimate of condition of approx. hessian   8.023e+00iterative steps total              46# of restarts                       3# of full regular updates          31# of updates                       43# of full regularized SQP-steps    38

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -