⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dembo7xx.pro~orig

📁 sqp程序包。用sqp算法实现非线性约束的优化求解
💻 PRO~ORIG
字号:
donlp2, v3, 05/29/98, copyright P. SpellucciThu Feb 24 16:54:00 2000dembo7     n=        16    nh=         0    ng=        51  epsx= 1.000e-05 sigsm= 1.490e-08startvalue  8.0000000e-01   8.3000000e-01   8.5000000e-01   8.7000000e-01   9.0000000e-01   1.0000000e-01   1.2000000e-01   1.9000000e-01   2.5000000e-01   2.9000000e-01   5.1200000e+00   1.3100000e-01   7.1800000e-01   6.4000000e+00   6.5000000e+00   5.7000000e-02   eps=  2.22e-16  tol= 1.98e-323 del0=  5.00e-03 delm=  5.00e-09 tau0=  9.00e-03  tau=  1.00e-01   sd=  1.00e-01   sw=  3.67e-11  rho=  1.00e-06 rho1=  1.00e-10 scfm=  1.00e+04  c1d=  1.00e-02 epdi=  0.00e+00  nre=        16 anal=         1 termination reason: correction very small, almost feasible but singular point evaluations of f                          147 evaluations of grad f                      81 evaluations of constraints               3684 evaluations of grads of constraints       911 final scaling of objective           1.000000e+00 norm of grad(f)                      8.768772e+00 lagrangian violation                 1.692147e-08 feasibility violation                2.030820e-12 dual feasibility violation           0.000000e+00 optimizer runtime sec's              1.250000e+00 optimal value of f =   1.74911058051906e+00 optimal solution  x =  7.24515715199819e-01  8.03773159694372e-01  9.00000000000000e-01  9.00000000000000e-01  9.00000000000000e-01  7.74562414364494e-02  1.00000001249032e-01  1.90836734693875e-01  1.90836734693875e-01  1.90836734693875e-01  4.84771301489083e+00  1.00000000000000e-08  7.40996382244602e-01  5.00000000000000e+00  5.00000000000000e+00  1.00000000000000e-08  multipliers are relativ to scf=1  nr.    constraint      normgrad (or 1)   multiplier    1   6.2451572e-01    1.0000000e+00    0.0000000e+00    2   7.0377316e-01    1.0000000e+00    0.0000000e+00    3   8.0000000e-01    1.0000000e+00    0.0000000e+00    4   8.0000000e-01    1.0000000e+00    0.0000000e+00    5   0.0000000e+00    1.0000000e+00    0.0000000e+00    6   7.7356241e-02    1.0000000e+00    0.0000000e+00    7   1.2490319e-09    1.0000000e+00    0.0000000e+00    8   9.0836735e-02    1.0000000e+00    0.0000000e+00    9   9.0836735e-02    1.0000000e+00    0.0000000e+00   10   9.0836735e-02    1.0000000e+00    0.0000000e+00   11   4.8377130e+00    1.0000000e+00    0.0000000e+00   12   0.0000000e+00    1.0000000e+00    8.2747535e-02   13   7.3099638e-01    1.0000000e+00    0.0000000e+00   14   0.0000000e+00    1.0000000e+00    4.2561963e-01   15   0.0000000e+00    1.0000000e+00    5.2672345e-01   16   0.0000000e+00    1.0000000e+00    1.5467200e-01   17   1.7548428e-01    1.0000000e+00    0.0000000e+00   18   9.6226840e-02    1.0000000e+00    0.0000000e+00   19   0.0000000e+00    1.0000000e+00    0.0000000e+00   20   0.0000000e+00    1.0000000e+00    3.5321279e+00   21   1.0000000e-01    1.0000000e+00    0.0000000e+00   22   2.2543759e-02    1.0000000e+00    0.0000000e+00   23   8.0000000e-01    1.0000000e+00    0.0000000e+00   24   7.0916327e-01    1.0000000e+00    0.0000000e+00   25   7.0916327e-01    1.0000000e+00    0.0000000e+00   26   7.0916327e-01    1.0000000e+00    0.0000000e+00   27   5.1522870e+00    1.0000000e+00    0.0000000e+00   28   5.0000000e+00    1.0000000e+00    0.0000000e+00   29   4.2590036e+00    1.0000000e+00    0.0000000e+00   30   5.0000000e+00    1.0000000e+00    0.0000000e+00   31   5.0000000e+00    1.0000000e+00    0.0000000e+00   32   5.0000000e+00    1.0000000e+00    0.0000000e+00   33   3.4626160e-02    3.5739669e+00    0.0000000e+00   34   8.4376950e-15    2.4573341e+00    1.0657466e+00   35  -1.5543122e-15    1.2436032e+00    3.9854001e+00   36  -1.3322676e-15    1.2436032e+00    0.0000000e+00   37  -1.3322676e-15    1.2436032e+00    1.1557844e-08   38   2.2543758e-01    1.1915764e+01    0.0000000e+00   39  -2.0261570e-12    8.0686244e+00    4.3996180e-01   40   3.8613557e-13    1.5412556e+00    4.5335053e+00   41  -4.4408921e-16    2.2333701e+00    2.3608549e+00   42   0.0000000e+00    1.0000000e+00    0.0000000e+00   43   1.1102230e-16    1.1111111e+00    0.0000000e+00   44   3.0457399e-02    1.0000000e+00    0.0000000e+00   45   1.0000000e+00    1.0000000e+00    0.0000000e+00   46   0.0000000e+00    1.5713484e+00    0.0000000e+00   47   0.0000000e+00    1.5713484e+00    0.0000000e+00   48   1.0691871e-01    1.7044086e+00    0.0000000e+00   49   9.8606732e-02    1.0000000e+00    0.0000000e+00   50   1.1102230e-16    7.4105940e+00    5.0059759e-01   51   5.5511151e-16    7.4105940e+00    5.0059759e-01 evaluations of restrictions and their gradients (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (   382,    58) (   251,    69) (   225,    38) (   210,    33) (   203,    80) (   196,    67) (   195,    68) (   184,    85) (   170,    85) (   167,    74) (   167,    81) (   167,     3) (   167,     0) (   167,    50) (   167,    11) (   167,    17) (   167,     0) (   167,    79) (   165,    13)last estimate of condition of active gradients  2.650e+01last estimate of condition of approx. hessian   1.000e+00iterative steps total              86# of restarts                       6# of full regular updates          52# of updates                       73# of full regularized SQP-steps    47

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -