⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 weaponh2.pro~orig

📁 sqp程序包。用sqp算法实现非线性约束的优化求解
💻 PRO~ORIG
字号:
donlp2, v3, 05/29/98, copyright P. SpellucciThu Feb 24 16:56:14 2000weaponh23     n=       100    nh=         0    ng=       112  epsx= 1.000e-05 sigsm= 1.490e-08startvalue  6.0000000e+00   6.0000000e+00   6.0000000e+00   6.0000000e+00   6.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   2.0000000e+01   2.0000000e+01   2.0000000e+01   2.0000000e+01   2.0000000e+01   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   8.0000000e+00   8.0000000e+00   8.0000000e+00   8.0000000e+00   8.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+01   1.0000000e+01   1.0000000e+01   1.0000000e+01   1.0000000e+01   1.2000000e+01   1.2000000e+01   1.2000000e+01   1.2000000e+01   1.2000000e+01   7.0000000e+00   7.0000000e+00   7.0000000e+00   7.0000000e+00   7.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   1.0000000e+00   3.0000000e+00   3.0000000e+00   3.0000000e+00   3.0000000e+00   3.0000000e+00   eps=  2.22e-16  tol= 1.98e-323 del0=  1.00e+01 delm=  1.00e-05 tau0=  1.00e+04  tau=  1.00e-01   sd=  1.00e-01   sw=  3.67e-11  rho=  1.00e-06 rho1=  1.00e-10 scfm=  1.00e+04  c1d=  1.00e-02 epdi=  0.00e+00  nre=       100 anal=         1 termination reason: KT-conditions satisfied, no further correction computed evaluations of f                          650 evaluations of grad f                     238 evaluations of constraints               7800 evaluations of grads of constraints        12 final scaling of objective           1.000000e+00 norm of grad(f)                      7.864276e-01 lagrangian violation                 7.002388e-06 feasibility violation                5.684342e-14 dual feasibility violation           0.000000e+00 optimizer runtime sec's              6.821000e+01 optimal value of f =  -1.73556957985521e+03 optimal solution  x =  5.93241266155306e-19  1.35165890462901e+01  4.73798824302617e-21  0.00000000000000e+00  1.21057708368733e-21  1.00000000000000e+02  3.90998855059760e+01  2.70667472235619e+01  2.03167782241720e+01  3.32890580947392e-21  1.81740030080185e-20  0.00000000000000e+00  0.00000000000000e+00  1.99639081314523e-20  5.36335219992757e-20  0.00000000000000e+00  0.00000000000000e+00  1.02355833841786e-18  1.54797690738870e-20  4.52345594470713e-20  0.00000000000000e+00  1.36039891205216e+00  0.00000000000000e+00  2.34895055334921e+01  2.08995690677108e+01  0.00000000000000e+00  0.00000000000000e+00  0.00000000000000e+00  0.00000000000000e+00  3.03207691053507e-20  0.00000000000000e+00  0.00000000000000e+00  0.00000000000000e+00  1.30828474810192e-19  2.62113008760648e+01  2.42365592043385e+01  3.80266640634162e+00  0.00000000000000e+00  0.00000000000000e+00  0.00000000000000e+00  0.00000000000000e+00  4.13766910683171e-19  0.00000000000000e+00  3.66497360755787e-19  0.00000000000000e+00  1.67754800646734e-18  5.00696073864589e-20  1.91006670235475e-19  6.63539307280450e-21  0.00000000000000e+00  1.71985772608486e-21  1.70575877514829e-19  5.50403858644743e-20  1.51249481645809e-20  4.37886991239352e+01  0.00000000000000e+00  7.20339555011921e+01  5.75516279552868e+01  6.42115363873607e+01  6.24141810322252e+01  0.00000000000000e+00  3.04190340138670e-21  6.96461951336658e-22  0.00000000000000e+00  0.00000000000000e+00  0.00000000000000e+00  9.64935915333230e-22  0.00000000000000e+00  0.00000000000000e+00  3.44121162263130e-20  3.31974515037793e+01  4.09344496336129e+01  5.05499960301069e-20  5.88236897095486e+01  0.00000000000000e+00  1.70444091530592e+01  7.27095036674454e-21  0.00000000000000e+00  0.00000000000000e+00  1.37366720376153e-20  5.08155370795539e+01  4.54080288447691e+01  4.86288480344426e+01  9.66127714328426e-20  0.00000000000000e+00  0.00000000000000e+00  8.34455144888267e-21  0.00000000000000e+00  1.10722745766080e-20  5.11321742984273e+01  0.00000000000000e+00  7.81948734053031e-20  5.40154117428071e+01  9.35251934847868e-20  0.00000000000000e+00  0.00000000000000e+00  0.00000000000000e+00  0.00000000000000e+00  0.00000000000000e+00  0.00000000000000e+00  multipliers are relativ to scf=1  nr.    constraint      normgrad (or 1)   multiplier    1   2.0815537e+01    2.2360680e+00    0.0000000e+00    2   0.0000000e+00    2.2360680e+00    5.9926494e-02    3   1.1132174e+01    2.2360680e+00    0.0000000e+00    4   8.8236897e+00    2.2360680e+00    0.0000000e+00    5   0.0000000e+00    2.2360680e+00    2.6999041e-02    6   6.2809684e+00    2.2360680e+00    0.0000000e+00    7   5.2414181e+01    2.2360680e+00    0.0000000e+00    8   0.0000000e+00    4.4721360e+00    5.9927471e-02    9   0.0000000e+00    4.4721360e+00    2.1769471e-01   10  -5.6843419e-14    4.4721360e+00    6.8707441e-02   11   0.0000000e+00    4.4721360e+00    1.2358458e-01   12   0.0000000e+00    4.4721360e+00    7.2290740e-02   13   5.9324127e-19    1.0000000e+00    5.9927513e-02   14   1.3516589e+01    1.0000000e+00    0.0000000e+00   15   4.7379882e-21    1.0000000e+00    5.9927509e-02   16   0.0000000e+00    1.0000000e+00    5.9927509e-02   17   1.2105771e-21    1.0000000e+00    5.9927509e-02   18   1.0000000e+02    1.0000000e+00    0.0000000e+00   19   3.9099886e+01    1.0000000e+00    0.0000000e+00   20   2.7066747e+01    1.0000000e+00    0.0000000e+00   21   2.0316778e+01    1.0000000e+00    0.0000000e+00   22   3.3289058e-21    1.0000000e+00    5.9927458e-02   23   1.8174003e-20    1.0000000e+00    5.9927467e-02   24   0.0000000e+00    1.0000000e+00    5.9927467e-02   25   0.0000000e+00    1.0000000e+00    5.9927463e-02   26   1.9963908e-20    1.0000000e+00    5.9927489e-02   27   5.3633522e-20    1.0000000e+00    3.2928461e-02   28   0.0000000e+00    1.0000000e+00    5.9927463e-02   29   0.0000000e+00    1.0000000e+00    5.9927463e-02   30   1.0235583e-18    1.0000000e+00    1.7661298e-02   31   1.5479769e-20    1.0000000e+00    5.9927463e-02   32   4.5234559e-20    1.0000000e+00    5.9927467e-02   33   0.0000000e+00    1.0000000e+00    6.6533545e-02   34   1.3603989e+00    1.0000000e+00    0.0000000e+00   35   0.0000000e+00    1.0000000e+00    7.6791389e-02   36   2.3489506e+01    1.0000000e+00    0.0000000e+00   37   2.0899569e+01    1.0000000e+00    0.0000000e+00   38   0.0000000e+00    1.0000000e+00    1.5776702e-01   39   0.0000000e+00    1.0000000e+00    9.7839899e-02   40   0.0000000e+00    1.0000000e+00    1.4451778e-01   41   0.0000000e+00    1.0000000e+00    1.5776685e-01   42   3.0320769e-20    1.0000000e+00    1.1421109e-01   43   0.0000000e+00    1.0000000e+00    2.1769471e-01   44   0.0000000e+00    1.0000000e+00    1.8775110e-01   45   0.0000000e+00    1.0000000e+00    2.1769471e-01   46   1.3082847e-19    1.0000000e+00    2.8225854e-02   47   2.6211301e+01    1.0000000e+00    0.0000000e+00   48   2.4236559e+01    1.0000000e+00    0.0000000e+00   49   3.8026664e+00    1.0000000e+00    0.0000000e+00   50   0.0000000e+00    1.0000000e+00    7.4026060e-02   51   0.0000000e+00    1.0000000e+00    6.3827743e-02   52   0.0000000e+00    1.0000000e+00    8.3776752e-02   53   0.0000000e+00    1.0000000e+00    3.3315463e-02   54   4.1376691e-19    1.0000000e+00    8.7799132e-03   55   0.0000000e+00    1.0000000e+00    3.3314875e-02   56   3.6649736e-19    1.0000000e+00    1.7737559e-02   57   0.0000000e+00    1.0000000e+00    1.4026634e-02   58   1.6775480e-18    1.0000000e+00    8.7803329e-03   59   5.0069607e-20    1.0000000e+00    2.1281291e-02   60   1.9100667e-19    1.0000000e+00    3.3931479e-02   61   6.6353931e-21    1.0000000e+00    4.6314351e-02   62   0.0000000e+00    1.0000000e+00    3.3513561e-02   63   1.7198577e-21    1.0000000e+00    5.5537574e-02   64   1.7057588e-19    1.0000000e+00    3.8763727e-02   65   5.5040386e-20    1.0000000e+00    6.1003735e-02   66   1.5124948e-20    1.0000000e+00    3.8763912e-02   67   4.3788699e+01    1.0000000e+00    0.0000000e+00   68   0.0000000e+00    1.0000000e+00    3.4303132e-02   69   7.2033956e+01    1.0000000e+00    0.0000000e+00   70   5.7551628e+01    1.0000000e+00    0.0000000e+00   71   6.4211536e+01    1.0000000e+00    0.0000000e+00   72   6.2414181e+01    1.0000000e+00    0.0000000e+00   73   0.0000000e+00    1.0000000e+00    1.2358458e-01   74   3.0419034e-21    1.0000000e+00    1.2358458e-01   75   6.9646195e-22    1.0000000e+00    1.2358458e-01   76   0.0000000e+00    1.0000000e+00    1.2358458e-01   77   0.0000000e+00    1.0000000e+00    1.2358458e-01   78   0.0000000e+00    1.0000000e+00    6.3658107e-02   79   9.6493592e-22    1.0000000e+00    1.2358456e-01   80   0.0000000e+00    1.0000000e+00    1.2358456e-01   81   0.0000000e+00    1.0000000e+00    1.2358456e-01   82   3.4412116e-20    1.0000000e+00    9.5575488e-02   83   3.3197452e+01    1.0000000e+00    0.0000000e+00   84   4.0934450e+01    1.0000000e+00    0.0000000e+00   85   5.0549996e-20    1.0000000e+00    5.1294285e-02   86   5.8823690e+01    1.0000000e+00    0.0000000e+00   87   0.0000000e+00    1.0000000e+00    6.8921416e-02   88   1.7044409e+01    1.0000000e+00    0.0000000e+00   89   7.2709504e-21    1.0000000e+00    1.2358456e-01   90   0.0000000e+00    1.0000000e+00    1.2358456e-01   91   0.0000000e+00    1.0000000e+00    1.2358456e-01   92   1.3736672e-20    1.0000000e+00    1.2358456e-01   93   5.0815537e+01    1.0000000e+00    0.0000000e+00   94   4.5408029e+01    1.0000000e+00    0.0000000e+00   95   4.8628848e+01    1.0000000e+00    0.0000000e+00   96   9.6612771e-20    1.0000000e+00    8.2468345e-03   97   0.0000000e+00    1.0000000e+00    3.5834223e-03   98   0.0000000e+00    1.0000000e+00    1.2363981e-02   99   8.3445514e-21    1.0000000e+00    6.0799656e-02  100   0.0000000e+00    1.0000000e+00    7.2290737e-02  101   1.1072275e-20    1.0000000e+00    7.2290737e-02  102   5.1132174e+01    1.0000000e+00    0.0000000e+00  103   0.0000000e+00    1.0000000e+00    5.0762021e-03  104   7.8194873e-20    1.0000000e+00    1.1786162e-02  105   5.4015412e+01    1.0000000e+00    0.0000000e+00  106   9.3525193e-20    1.0000000e+00    4.2347180e-02  107   0.0000000e+00    1.0000000e+00    3.1529614e-02  108   0.0000000e+00    1.0000000e+00    5.5175494e-02  109   0.0000000e+00    1.0000000e+00    7.2290680e-02  110   0.0000000e+00    1.0000000e+00    7.2290680e-02  111   0.0000000e+00    1.0000000e+00    7.2290680e-02  112   0.0000000e+00    1.0000000e+00    7.2290680e-02 evaluations of restrictions and their gradients (   650,     1) (   650,     1) (   650,     1) (   650,     1) (   650,     1) (   650,     1) (   650,     1) (   650,     1) (   650,     1) (   650,     1) (   650,     1) (   650,     1) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0) (     0,     0)last estimate of condition of active gradients  4.926e+00last estimate of condition of approx. hessian   1.757e+04iterative steps total             237# of restarts                       0# of full regular updates         237# of updates                      237# of full regularized SQP-steps     0

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -