⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 testxxxx.pro

📁 sqp程序包。用sqp算法实现非线性约束的优化求解
💻 PRO
📖 第 1 页 / 共 5 页
字号:
      1     7.151329e+00       2    -7.915196e+00       3    -7.500511e+00       4     5.782473e+00       5     3.404907e+00       6    -1.093693e+01       7    -2.181938e+01       8     3.871747e+00       9     9.419665e-01   multipliers: first estimate  u =    1   9.6873e-01    2   0.0000e+00    5   3.6504e+00    8  -4.1550e-01    9  -8.1557e-01   11   2.5151e-02   12   0.0000e+00   14   2.6186e-01  del=  5.88994e-02  b2n0=  5.54171e-04   b2n=  1.88800e-04   gfn=  2.59873e-03 values of restrictions (   1    1.1477e-15    3.0000e+00)  (   2    1.0282e-02    2.9291e+00)   (   5    1.0282e-02    1.0000e+00)  (   8    5.6807e-02    1.0000e+00)   (   9    1.4350e-02    1.0000e+00)  (  11    5.7061e-02    1.0000e+00)   (  12    1.9707e-02    1.0000e+00)  (  14    5.0742e-04    1.0000e+00)      diag[r]=  -1.0000e+00  -8.4403e-01  -8.5598e-01   4.6521e-02   4.4779e-02   3.7649e-02   0.0000e+00   0.0000e+00 gradient of restriction nr.   1   1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    gradient of restriction nr.   2  -1.0000e+00   -1.0000e+00   -8.8000e-01   -1.0000e+00   -1.0000e+00    -9.6000e-01   -9.4000e-01   -1.0000e+00   -1.0000e+00    gradient of restriction nr.   5   0.0000e+00    0.0000e+00    1.2000e-01    0.0000e+00    0.0000e+00     4.0000e-02    6.0000e-02    0.0000e+00    0.0000e+00    gradient of restriction nr.   8   0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.   9   0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  11   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     1.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  12   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  14   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00    singular case : full regularized SQP  del = 5.889944722528333e-02  scalres=   1.1123e+00   1.2000e+00   1.2000e+00   1.0000e+00   1.4000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00gradients of binding constraints gradient of restriction nr.   1   0.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    gradient of restriction nr.   2   0.0000e+00    -1.0000e+00   -1.0000e+00   -8.8000e-01   -1.0000e+00   -1.0000e+00    -9.6000e-01   -9.4000e-01   -1.0000e+00   -1.0000e+00    gradient of restriction nr.   5   0.0000e+00     0.0000e+00    0.0000e+00    1.2000e-01    0.0000e+00    0.0000e+00     4.0000e-02    6.0000e-02    0.0000e+00    0.0000e+00    gradient of restriction nr.   8   0.0000e+00     0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.   9   0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  11   0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     1.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  12   0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  14   0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00     condition number of r     -1.000000000000000e+00  condition number of a     1.086621878985623e+03additional increase of eta due to large clow  current scaling,  scf =   1.1505e+03 clow =            4 eta =   2.8955e-20  scalres=   2.0785e+00   6.0000e-01   9.6000e-01   8.0000e-01   7.0000e-01   9.6000e-01   9.6000e-01   6.0000e-01   6.0000e-01   9.6000e-01   6.0000e-01   6.0000e-01   9.6000e-01   1.4768e+00   8.0000e-01   8.0000e-01   8.0000e-01   8.0000e-01   8.0000e-01   8.0000e-01   8.0000e-01   8.0000e-01   8.0000e-01  del=  5.88994e-02  b2n0=  5.54171e-04   b2n=  8.73803e-04   gfn=  2.59873e-03 values of restrictions (   1    1.1477e-15    3.0000e+00)  (   2    1.0282e-02    2.9291e+00)   (   5    1.0282e-02    1.0000e+00)  (   8    5.6807e-02    1.0000e+00)   (   9    1.4350e-02    1.0000e+00)  (  11    5.7061e-02    1.0000e+00)   (  12    1.9707e-02    1.0000e+00)  (  14    5.0742e-04    1.0000e+00)    gradient of restriction nr.   1   1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    gradient of restriction nr.   2  -1.0000e+00   -1.0000e+00   -8.8000e-01   -1.0000e+00   -1.0000e+00    -9.6000e-01   -9.4000e-01   -1.0000e+00   -1.0000e+00    gradient of restriction nr.   5   0.0000e+00    0.0000e+00    1.2000e-01    0.0000e+00    0.0000e+00     4.0000e-02    6.0000e-02    0.0000e+00    0.0000e+00    gradient of restriction nr.   8   0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.   9   0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  11   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     1.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  12   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  14   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00   exit from full SQP            termination reason    1e+00          final value of tauqp   1.000e+00      sum norm of slack vector   0.000e+00  phase=  0  scf0=  1.0000e+00  d =   -2.5781e-02  -7.4328e-03   5.7687e-03   6.8957e-02  -2.1292e-02  -3.9272e-03  -9.4897e-04  -1.4836e-02  -5.0742e-04  multipliers: first estimate  u =    1   9.8926e-01    2   0.0000e+00    3   0.0000e+00    4   0.0000e+00    5   0.0000e+00    6   0.0000e+00    7   0.0000e+00    8   0.0000e+00    9   0.0000e+00   10   0.0000e+00   11   0.0000e+00   12   0.0000e+00   13   0.0000e+00   14   6.8838e-01   15   0.0000e+00   16   0.0000e+00   17   0.0000e+00   18   0.0000e+00   19   0.0000e+00   20   0.0000e+00   21   0.0000e+00   22   0.0000e+00   23   0.0000e+00  phase=  0  scf0=  1.0000e+00  d =  -2.5781e-02  -7.4328e-03   5.7687e-03   6.8957e-02  -2.1292e-02  -3.9272e-03  -9.4897e-04  -1.4836e-02  -5.0742e-04 start unimin    phi=  4.8625e-01   dphi= -5.7163e-02    psi=  2.3856e-15 tau0/2=  5.0000e-01     fx=  4.2264e-04  dscal=  1.0000e+00    scf=  1.1505e+03   upsi=  1.1477e-15    sig=  1.0000e+00     fx=  3.9364e-04    psi=  2.1454e-16   upsi=  1.0322e-16 end unimin sig=  1.0000e+00  num. f-evaluations 1 list of inactive hit constraintsnoneBFGS-update as in Pantoja and Mayne  tk  =   6.198261e-03 xsik =   0.000000e+00================================================================================            12-th iteration step   scf=  1.1505e+03 psist=  2.0785e+00   psi=  2.1454e-16  upsi=  1.0322e-16  fxst=  1.5154e-15    fx=  3.9364e-04  x=   3.1765e-01   5.7409e-02   6.2576e-02   8.3307e-02   2.2257e-01   5.3134e-02   1.8758e-02   1.8460e-01   1.9949e-17 valid permutation of x  8   9   4   3   5   6   7   2   1          quasi-Newton-matrix full updaterow/column        1              2              3              4            1     2.196254e+01   2.615943e-01   1.211583e-01  -7.607779e-01       2     0.000000e+00   3.078364e+01  -5.081317e+00   1.820164e+00       3     0.000000e+00   0.000000e+00   3.105094e+01  -4.390310e+00       4     0.000000e+00   0.000000e+00   0.000000e+00   3.336835e+00       5     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       6     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       7     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       8     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       9     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00 row/column        5              6              7              8            1    -1.927446e+01   8.847425e-01   4.960194e+00  -1.469379e+01       2    -2.346384e+00  -6.381472e+00  -7.258431e+00  -2.997400e+00       3    -2.094040e+00  -6.246784e+00  -7.129564e+00  -2.969087e+00       4     6.928625e+00  -1.562974e+00  -8.699388e-01  -6.491877e+00       5     2.048796e+01  -3.165403e+00   2.532316e+00  -2.414999e+01       6     0.000000e+00   2.940664e+01  -1.050976e+01  -6.746148e+00       7     0.000000e+00   0.000000e+00   2.532239e+01  -1.648449e+00       8     0.000000e+00   0.000000e+00   0.000000e+00   6.218885e+00       9     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00 row/column        9            1     7.117730e+00       2    -7.873250e+00       3    -7.500628e+00       4     4.684375e+00       5     3.676018e+00       6    -1.094509e+01       7    -2.189739e+01       8     4.183023e+00       9     9.418195e-01   multipliers: first estimate  u =    1  -4.5262e-02   14   7.7536e-01    2  -9.5890e-01  del=  1.00000e-02  b2n0=  3.94413e-05   b2n=  6.17369e-04   gfn=  2.55495e-03 values of restrictions (   1    1.0322e-16    3.0000e+00)  (  14    1.9949e-17    1.0000e+00)   (   2    1.0760e-02    2.9291e+00)      diag[r]=  -1.0000e+00  -8.0805e-01  -5.7231e-03 gradient of restriction nr.   1   1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    gradient of restriction nr.  14   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00    gradient of restriction nr.   2  -1.0000e+00   -1.0000e+00   -8.8000e-01   -1.0000e+00   -1.0000e+00    -9.6000e-01   -9.4000e-01   -1.0000e+00   -1.0000e+00     multipliers: second estimate  u =    1  -4.5262e-02   14   7.7536e-01    2  -9.5890e-01  condition number of r     1.747312531360756e+02  condition number of a     1.086961408254853e+03  current scaling,  scf =   1.1505e+03 clow =            4 eta =   2.8955e-20  scalres=   2.0785e+00   2.1178e+00   9.6000e-01   8.0000e-01   7.0000e-01   9.6000e-01   9.6000e-01   6.0000e-01   6.0000e-01   9.6000e-01   6.0000e-01   6.0000e-01   9.6000e-01   1.7507e+00   8.0000e-01   8.0000e-01   8.0000e-01   8.0000e-01   8.0000e-01   8.0000e-01   8.0000e-01   8.0000e-01   8.0000e-01  phase=  0  scf0=  1.0000e+00  d =  -2.9835e-01  -1.9887e-02   1.2284e-01   4.5012e-01  -2.1072e-01   2.5714e-02   7.6320e-02  -1.4603e-01  -5.6552e-17 start unimin    phi=  4.5289e-01   dphi= -2.1540e-02    psi=  2.1454e-16 tau0/2=  5.0000e-01     fx=  3.9364e-04  dscal=  1.0000e+00    scf=  1.1505e+03   upsi=  1.0322e-16    sig=  1.0000e+00     fx=  1.3277e-03    psi=  1.7307e-16   upsi=  8.3267e-17    sig=  5.0000e-01     fx=  6.2248e-04    psi=  1.1538e-16   upsi=  5.5511e-17    sig=  1.2500e-01     fx=  4.0619e-04    psi=  1.4215e-16   upsi=  6.8392e-17    sig=  1.2500e-02     fx=  3.9355e-04    psi=  3.2845e-16   upsi=  1.5802e-16 end unimin sig=  1.2500e-02  num. f-evaluations 4 list of inactive hit constraintsnoneBFGS-update as in Pantoja and Mayne  tk  =   3.793197e-01 xsik =   0.000000e+00================================================================================            13-th iteration step   scf=  1.1505e+03 psist=  2.0785e+00   psi=  3.2845e-16  upsi=  1.5802e-16  fxst=  1.5154e-15    fx=  3.9355e-04  x=   3.1392

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -