⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 testxxxx.pro

📁 sqp程序包。用sqp算法实现非线性约束的优化求解
💻 PRO
📖 第 1 页 / 共 5 页
字号:
      8     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       9     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00 row/column        5              6              7              8            1    -1.171427e-01  -1.170073e-01  -1.169806e-01  -1.171091e-01       2    -1.324471e-01  -1.322488e-01  -1.322096e-01  -1.323978e-01       3    -1.526710e-01  -1.524396e-01  -1.523939e-01  -1.526136e-01       4    -1.800945e-01  -1.798060e-01  -1.797490e-01  -1.800229e-01       5     8.958725e-01  -2.200542e-01  -2.199943e-01  -2.202824e-01       6     0.000000e+00   8.687555e-01  -2.822330e-01  -2.826342e-01       7     0.000000e+00   0.000000e+00   8.217218e-01  -3.958036e-01       8     0.000000e+00   0.000000e+00   0.000000e+00   7.194841e-01       9     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00 row/column        9            1    -1.169675e-01       2    -1.321905e-01       3    -1.523715e-01       4    -1.797212e-01       5    -2.199650e-01       6    -2.821922e-01       7    -3.951772e-01       8    -6.693797e-01       9     2.666232e-01   multipliers: first estimate  u =    1   9.3532e-04  del=  1.00000e-02  b2n0=  3.15392e-04   b2n=  3.15409e-04   gfn=  2.82393e-03 values of restrictions (   1    1.3878e-17    3.0000e+00)      diag[r]=  -1.0000e+00 gradient of restriction nr.   1   1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     multipliers: second estimate  u =    1   9.3532e-04  condition number of r     1.000000000000000e+00  condition number of a     1.251205708520810e+01  current scaling,  scf =   1.0000e+00 clow =            1 eta =   1.7133e-20  scalres=   1.0000e+00   1.0000e+00   1.2000e+00   1.0000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00  phase=  0  scf0=  1.0000e+00  d =   2.0704e-04  -3.2560e-05  -4.7726e-05  -1.2777e-04   1.2287e-04  -4.1136e-05  -7.3527e-05   8.2163e-05  -8.9359e-05 start unimin    phi=  4.6771e-04   dphi= -9.9472e-08    psi=  1.3878e-17 tau0/2=  5.0000e-01     fx=  4.6771e-04  dscal=  1.0000e+00    scf=  1.0000e+00   upsi=  1.3878e-17    sig=  1.0000e+00     fx=  4.6761e-04    psi=  1.1102e-16   upsi=  1.1102e-16    sig=  2.0000e+00     fx=  4.6751e-04    psi=  2.2204e-16   upsi=  2.2204e-16    sig=  4.0000e+00     fx=  4.6731e-04    psi=  1.3878e-16   upsi=  1.3878e-16    sig=  8.0000e+00     fx=  4.6692e-04    psi=  2.4980e-16   upsi=  2.4980e-16    sig=  1.6000e+01     fx=  4.6614e-04    psi=  3.3307e-16   upsi=  3.3307e-16    sig=  3.2000e+01     fx=  4.6462e-04    psi=  5.9674e-16   upsi=  5.9674e-16    sig=  6.4000e+01     fx=  4.6171e-04    psi=  8.8818e-16   upsi=  8.8818e-16    sig=  1.2800e+02     fx=  4.5646e-04    psi=  1.8180e-15   upsi=  1.8180e-15    sig=  2.5600e+02     fx=  4.4816e-04    psi=  3.5111e-15   upsi=  3.5111e-15    sig=  5.1200e+02     fx=  4.4045e-04    psi=  7.2026e-15   upsi=  7.2026e-15    sig=  1.0240e+03     fx=  4.6027e-04    psi=  2.7075e-02   upsi=  2.7075e-02 end unimin sig=  5.1200e+02  num. f-evaluations11 list of inactive hit constraints   2  BFGS-update as in Pantoja and Mayne  tk  =   9.946174e-08 xsik =   0.000000e+00================================================================================             3-th iteration step   scf=  1.0000e+00 psist=  1.0000e-00   psi=  7.2026e-15  upsi=  7.2026e-15  fxst=  1.5154e-15    fx=  4.4045e-04  x=   2.1712e-01   9.4441e-02   8.6676e-02   4.5692e-02   1.7402e-01   9.0050e-02   7.3465e-02   1.5318e-01   6.5359e-02 valid permutation of x  9   2   3   4   5   6   7   8   1          quasi-Newton-matrix full updaterow/column        1              2              3              4            1     6.774043e-01  -6.254597e-02  -1.607602e-02   2.291845e-01       2     0.000000e+00   9.355608e-01  -1.355841e-01  -1.475544e-01       3     0.000000e+00   0.000000e+00   9.210706e-01  -2.030439e-01       4     0.000000e+00   0.000000e+00   0.000000e+00   7.856013e-01       5     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       6     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       7     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       8     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       9     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00 row/column        5              6              7              8            1    -5.401419e-01  -3.622330e-02   6.330764e-02  -4.150931e-01       2    -1.108419e-01  -1.345734e-01  -1.392568e-01  -1.167476e-01       3    -8.143515e-02  -1.615021e-01  -1.773216e-01  -1.012822e-01       4     1.755034e-01  -2.640977e-01  -3.509932e-01   6.670309e-02       5     6.297867e-01  -9.627373e-02   7.396328e-02  -7.442998e-01       6     0.000000e+00   8.650386e-01  -3.135642e-01  -2.050019e-01       7     0.000000e+00   0.000000e+00   7.440680e-01  -5.804757e-02       8     0.000000e+00   0.000000e+00   0.000000e+00   1.481471e-01       9     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00 row/column        9            1     1.119679e-01       2    -1.415386e-01       3    -1.850659e-01       4    -3.936122e-01       5     1.572388e-01       6    -3.246388e-01       7    -6.550858e-01       8     9.157665e-02       9     1.419733e-01   multipliers: first estimate  u =    1   8.6916e-04    2   0.0000e+00    5   6.3921e-04  del=  2.02521e-02  b2n0=  7.35775e-04   b2n=  4.68918e-04   gfn=  2.69725e-03 values of restrictions (   1   -7.2026e-15    3.0000e+00)  (   2    1.8411e-02    2.9291e+00)   (   5    1.8411e-02    1.0000e+00)      diag[r]=  -1.0000e+00   8.3429e-01   0.0000e+00 gradient of restriction nr.   1   1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    gradient of restriction nr.   2  -1.0000e+00   -1.0000e+00   -8.8000e-01   -1.0000e+00   -1.0000e+00    -9.6000e-01   -9.4000e-01   -1.0000e+00   -1.0000e+00    gradient of restriction nr.   5   0.0000e+00    0.0000e+00    1.2000e-01    0.0000e+00    0.0000e+00     4.0000e-02    6.0000e-02    0.0000e+00    0.0000e+00    singular case : full regularized SQP  del = 2.025207854784318e-02  scalres=   1.0000e+00   1.0000e+00   1.2000e+00   1.0000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00gradients of binding constraints gradient of restriction nr.   1   0.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    gradient of restriction nr.   2   0.0000e+00    -1.0000e+00   -1.0000e+00   -8.8000e-01   -1.0000e+00   -1.0000e+00    -9.6000e-01   -9.4000e-01   -1.0000e+00   -1.0000e+00    gradient of restriction nr.   5   0.0000e+00     0.0000e+00    0.0000e+00    1.2000e-01    0.0000e+00    0.0000e+00     4.0000e-02    6.0000e-02    0.0000e+00    0.0000e+00     condition number of r     -1.000000000000000e+00  condition number of a     4.342407185695219e+01  current scaling,  scf =   1.0000e+00 clow =            1 eta =   1.7133e-20  scalres=   1.0000e+00   1.2000e+00   1.2000e+00   1.0000e+00   1.4000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00  del=  2.02521e-02  b2n0=  7.35775e-04   b2n=  4.84162e-04   gfn=  2.69725e-03 values of restrictions (   1   -7.2026e-15    3.0000e+00)  (   2    1.8411e-02    2.9291e+00)   (   5    1.8411e-02    1.0000e+00)    gradient of restriction nr.   1   1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    gradient of restriction nr.   2  -1.0000e+00   -1.0000e+00   -8.8000e-01   -1.0000e+00   -1.0000e+00    -9.6000e-01   -9.4000e-01   -1.0000e+00   -1.0000e+00    gradient of restriction nr.   5   0.0000e+00    0.0000e+00    1.2000e-01    0.0000e+00    0.0000e+00     4.0000e-02    6.0000e-02    0.0000e+00    0.0000e+00   exit from full SQP            termination reason    1e+00          final value of tauqp   1.000e+00      sum norm of slack vector   0.000e+00  phase=  0  scf0=  1.0000e+00  d =    8.6848e-03  -1.4702e-03  -2.0107e-03  -4.8584e-03   5.0992e-03  -1.8104e-03  -3.1800e-03   3.4050e-03  -3.8592e-03  multipliers: first estimate  u =    1   8.8064e-04    2   0.0000e+00    3   0.0000e+00    4   0.0000e+00    5   0.0000e+00    6   0.0000e+00    7   0.0000e+00    8   0.0000e+00    9   0.0000e+00   10   0.0000e+00   11   0.0000e+00   12   0.0000e+00   13   0.0000e+00   14   0.0000e+00   15   0.0000e+00   16   0.0000e+00   17   0.0000e+00   18   0.0000e+00   19   0.0000e+00   20   0.0000e+00   21   0.0000e+00   22   0.0000e+00   23   0.0000e+00  phase=  0  scf0=  1.0000e+00  d =   8.6848e-03  -1.4702e-03  -2.0107e-03  -4.8584e-03   5.0992e-03  -1.8104e-03  -3.1800e-03   3.4050e-03  -3.8592e-03 start unimin    phi=  4.4045e-04   dphi= -5.4136e-07    psi=  7.2026e-15 tau0/2=  5.0000e-01     fx=  4.4045e-04  dscal=  1.0000e+00    scf=  1.0000e+00   upsi=  7.2026e-15    sig=  1.0000e+00     fx=  4.4005e-04    psi=  1.1796e-16   upsi=  1.1796e-16 end unimin sig=  1.0000e+00  num. f-evaluations 1 list of inactive hit constraintsnoneBFGS-update as in Pantoja and Mayne  tk  =   1.711147e-04 xsik =   0.000000e+00================================================================================             4-th iteration step   scf=  1.0000e+00 psist=  1.0000e-00   psi=  1.1796e-16  upsi=  1.1796e-16  fxst=  1.5154e-15    fx=  4.4005e-04  x=   2.2580e-01   9.2970e-02   8.4665e-02   4.0834e-02   1.7912e-01   8.8239e-02   7.0285e-02   1.5658e-01   6.1500e-02 valid permutation of x  9   2   3   4   5   6   7   8   1          quasi-Newton-matrix full updaterow/column        1              2              3              4            1     6.615431e-01  -2.852531e-02  -5.274413e-03   1.160030e-01       2     0.000000e+00   9.233022e-01  -1.454212e-01  -6.860082e-02       3     0.000000e+00   0.000000e+00   9.183270e-01  -1.653425e-01       4     0.000000e+00   0.000000e+00   0.000000e+00   6.389223e-01       5     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       6     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       7     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       8     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       9     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00 row/column        5              6              7              8            1    -5.563485e-01  -5.662005e-03   1.044865e-01  -4.255197e-01       2    -9.024710e-02  -1.589212e-01  -1.735217e-01  -1.029124e-01       3    -7.259057e-02  -1.746288e-01  -1.952997e-01  -9.573086e-02       4     1.323982e-01  -1.973419e-01  -2.579261e-01   3.136407e-02       5     6.304522e-01  -9.712437e-02   7.267691e-02  -7.435639e-01       6     0.000000e+00   8.650667e-01  -3.134476e-01  -2.050385e-01       7     0.000000e+00   0.000000e+00   7.442341e-01  -5.812036e-02       8     0.000000e+00   0.000000e+00   0.000000e+00   1.478444e-01       9     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00 row/column        9            1     1.610931e-01       2    -1.827296e-01       3    -2.064373e-01       4    -2.784635e-01       5     1.561251e-01       6    -3.249590e-01       7    -6.557082e-01       8     9.602447e-02       9     1.286419e-01   multipliers: first estimate  u =    1   8.8010e-04  del=  7.38058e-04  b2n0=  8.99243e-04   b2n=  5.19725e-04   gfn=  2.69175e-03 values of restrictions (   1   -1.1796e-16    3.0000e+00)      diag[r]=  -1.0000e+00 gradient of restriction nr.   1   1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     multipliers: second estimate  u =    1   8.8010e-04  condition number of r     1.000000000000000e+00  condition number of a     5.151367735641758e+01  current scaling,  scf =   1.0000e+00 clow =            1 eta =   1.7133e-20  scalres=   1.0000e+00   1.2000e+00   1.2000e+00   1.0000e+00   1.4000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00  phase=  0  scf0=  1.0000e+00  d =   9.9795e-03  -1.8819e-03  -2.3264e-03  -4.6593e-03   5.7581e-03  -2.2367e-03

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -