⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 testxxxx.pro

📁 sqp程序包。用sqp算法实现非线性约束的优化求解
💻 PRO
📖 第 1 页 / 共 5 页
字号:
donlp2, v3, 05/29/98, copyright P. SpellucciThu May 15 15:11:02 2003test================================================================================             1-th iteration step   scf=  1.0000e+00 psist=  1.0000e-00   psi=  1.0000e-00  upsi=  1.0000e-00  fxst=  1.5154e-15    fx=  1.5154e-15  x=   2.0000e-07   2.0000e-07   2.0000e-07   2.0000e-07   2.0000e-07   2.0000e-07   2.0000e-07   2.0000e-07   2.0000e-07 valid permutation of x  1   2   3   4   5   6   7   8   9          quasi-Newton-matrix full updaterow/column        1              2              3              4            1     1.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       2     0.000000e+00   1.000000e+00   0.000000e+00   0.000000e+00       3     0.000000e+00   0.000000e+00   1.000000e+00   0.000000e+00       4     0.000000e+00   0.000000e+00   0.000000e+00   1.000000e+00       5     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       6     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       7     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       8     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       9     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00 row/column        5              6              7              8            1     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       2     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       3     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       4     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       5     1.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       6     0.000000e+00   1.000000e+00   0.000000e+00   0.000000e+00       7     0.000000e+00   0.000000e+00   1.000000e+00   0.000000e+00       8     0.000000e+00   0.000000e+00   0.000000e+00   1.000000e+00       9     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00 row/column        9            1     0.000000e+00       2     0.000000e+00       3     0.000000e+00       4     0.000000e+00       5     0.000000e+00       6     0.000000e+00       7     0.000000e+00       8     0.000000e+00       9     1.000000e+00   multipliers: first estimate  u =    1   1.8446e-09    5  -6.2457e-10    3   0.0000e+00    6  -5.3358e-10    7  -1.0225e-10    8   0.0000e+00    9   6.9149e-11   10  -3.8205e-10   11  -6.1829e-11   12   8.9736e-12   13  -3.0877e-10   14   0.0000e+00  del=  1.00000e-02  b2n0=  5.39150e-10   b2n=  2.43202e-25   gfn=  5.08307e-09 values of restrictions (   1   -1.0000e-00    3.0000e+00)  (   5    4.4000e-08    1.0000e+00)   (   3    1.7560e-06    2.9291e+00)  (   6    2.0000e-07    1.0000e+00)   (   7    2.0000e-07    1.0000e+00)  (   8    2.0000e-07    1.0000e+00)   (   9    2.0000e-07    1.0000e+00)  (  10    2.0000e-07    1.0000e+00)   (  11    2.0000e-07    1.0000e+00)  (  12    2.0000e-07    1.0000e+00)   (  13    2.0000e-07    1.0000e+00)  (  14    2.0000e-07    1.0000e+00)      diag[r]=  -1.0000e+00   8.5184e-01   9.2026e-01   9.0509e-01   8.8277e-01   8.4662e-01   8.9353e-01   8.5280e-01   7.0711e-01   0.0000e+00   0.0000e+00   0.0000e+00 gradient of restriction nr.   1   1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    gradient of restriction nr.   5   0.0000e+00    0.0000e+00    1.2000e-01    0.0000e+00    0.0000e+00     4.0000e-02    6.0000e-02    0.0000e+00    0.0000e+00    gradient of restriction nr.   3   1.0000e+00    1.0000e+00    8.8000e-01    1.0000e+00    1.0000e+00     9.6000e-01    9.4000e-01    1.0000e+00    1.0000e+00    gradient of restriction nr.   6   1.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.   7   0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.   8   0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.   9   0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  10   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  11   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     1.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  12   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  13   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00    gradient of restriction nr.  14   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00    singular case : full regularized SQP  del = 1.000000000000000e-02  scalres=   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00gradients of binding constraints gradient of restriction nr.   1   0.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    gradient of restriction nr.   5   0.0000e+00     0.0000e+00    0.0000e+00    1.2000e-01    0.0000e+00    0.0000e+00     4.0000e-02    6.0000e-02    0.0000e+00    0.0000e+00    gradient of restriction nr.   3   0.0000e+00     1.0000e+00    1.0000e+00    8.8000e-01    1.0000e+00    1.0000e+00     9.6000e-01    9.4000e-01    1.0000e+00    1.0000e+00    gradient of restriction nr.   6   0.0000e+00     1.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.   7   0.0000e+00     0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.   8   0.0000e+00     0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.   9   0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  10   0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  11   0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     1.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  12   0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  13   0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00    gradient of restriction nr.  14   0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00     condition number of r     -1.000000000000000e+00  condition number of a     1.000000000000000e+00  current scaling,  scf =   1.0000e+00 clow =            1 eta =   0.0000e+00  scalres=   1.0000e+00   1.0000e+00   1.2000e+00   1.0000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.2000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00   1.0000e+00  del=  1.00000e-02  b2n0=  5.39150e-10   b2n=  3.33333e-01   gfn=  5.08307e-09 values of restrictions (   1   -1.0000e-00    3.0000e+00)  (   5    4.4000e-08    1.0000e+00)   (   3    1.7560e-06    2.9291e+00)  (   6    2.0000e-07    1.0000e+00)   (   7    2.0000e-07    1.0000e+00)  (   8    2.0000e-07    1.0000e+00)   (   9    2.0000e-07    1.0000e+00)  (  10    2.0000e-07    1.0000e+00)   (  11    2.0000e-07    1.0000e+00)  (  12    2.0000e-07    1.0000e+00)   (  13    2.0000e-07    1.0000e+00)  (  14    2.0000e-07    1.0000e+00)    gradient of restriction nr.   1   1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00     1.0000e+00    1.0000e+00    1.0000e+00    1.0000e+00    gradient of restriction nr.   5   0.0000e+00    0.0000e+00    1.2000e-01    0.0000e+00    0.0000e+00     4.0000e-02    6.0000e-02    0.0000e+00    0.0000e+00    gradient of restriction nr.   3   1.0000e+00    1.0000e+00    8.8000e-01    1.0000e+00    1.0000e+00     9.6000e-01    9.4000e-01    1.0000e+00    1.0000e+00    gradient of restriction nr.   6   1.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.   7   0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.   8   0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.   9   0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  10   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  11   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     1.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  12   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    1.0000e+00    0.0000e+00    0.0000e+00    gradient of restriction nr.  13   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    1.0000e+00    0.0000e+00    gradient of restriction nr.  14   0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00    0.0000e+00     0.0000e+00    0.0000e+00    0.0000e+00    1.0000e+00   exit from full SQP            termination reason    1e+00          final value of tauqp   1.000e+00      sum norm of slack vector   0.000e+00  phase=  0  scf0=  1.0000e+00  d =    1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01  multipliers: first estimate  u =    1   1.1111e-01    2   0.0000e+00    3   0.0000e+00    4   0.0000e+00    5   0.0000e+00    6   0.0000e+00    7   0.0000e+00    8   0.0000e+00    9   0.0000e+00   10   0.0000e+00   11   0.0000e+00   12   0.0000e+00   13   0.0000e+00   14   0.0000e+00   15   0.0000e+00   16   0.0000e+00   17   0.0000e+00   18   0.0000e+00   19   0.0000e+00   20   0.0000e+00   21   0.0000e+00   22   0.0000e+00   23   0.0000e+00  phase=  0  scf0=  1.0000e+00  d =   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01 start unimin    phi=  1.0000e-00   dphi= -1.0000e-00    psi=  1.0000e-00 tau0/2=  5.0000e-01     fx=  1.5154e-15  dscal=  1.0000e+00    scf=  1.0000e+00   upsi=  1.0000e-00    sig=  1.0000e+00     fx=  4.6771e-04    psi=  1.3878e-17   upsi=  1.3878e-17 end unimin sig=  1.0000e+00  num. f-evaluations 1 list of inactive hit constraintsnoneBFGS-update as in Pantoja and Mayne  tk  =   1.111107e-01 xsik =   0.000000e+00================================================================================             2-th iteration step   scf=  1.0000e+00 psist=  1.0000e-00   psi=  1.3878e-17  upsi=  1.3878e-17  fxst=  1.5154e-15    fx=  4.6771e-04  x=   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01   1.1111e-01 valid permutation of x  1   2   3   4   5   6   7   8   9          quasi-Newton-matrix full updaterow/column        1              2              3              4            1     9.431098e-01  -1.170144e-01  -1.170019e-01  -1.169358e-01       2     0.000000e+00   9.360546e-01  -1.322408e-01  -1.321441e-01       3     0.000000e+00   0.000000e+00   9.266850e-01  -1.523173e-01       4     0.000000e+00   0.000000e+00   0.000000e+00   9.141995e-01       5     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       6     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00       7     0.000000e+00   0.000000e+00   0.000000e+00   0.000000e+00 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -