📄 bitstream.c
字号:
assert(-1 <= v && v <= 1); } ix += 4; putbits2(gfp,huffbits + h->table[p], h->hlen[p]); bits += h->hlen[p]; }#ifdef DEBUG DEBUGF("%ld %d %d %d\n",gfc->bs.totbit -gegebo, gi->count1bits, gi->big_values, gi->count1);#endif return bits;}/* Implements the pseudocode of page 98 of the IS */static INLINE intHuffmanCode(lame_global_flags *gfp, unsigned int table_select, int x, int y){ /* lame_internal_flags *gfc=gfp->internal_flags;*/ unsigned int code, ext, xlen; int cbits, xbits; unsigned int signx, signy, linbits; const struct huffcodetab *h; cbits = 0; xbits = 0; code = 0; signx = signy = 0; if (x < 0) { signx++; x = -x; } if (y < 0) { signy++; y = -y; } assert(table_select>0); h = &(ht[table_select]); linbits = h->xlen; ext = signx; xlen = h->xlen; if (table_select > 15) { /* use ESC-words */ if (x > 14) { int linbitsx = x - 15; assert(linbitsx <= h->linmax); ext |= linbitsx << 1; xbits = linbits; x = 15; } if (y > 14) { int linbitsy = y - 15; assert(linbitsy <= h->linmax); ext <<= linbits; ext |= linbitsy; xbits += linbits; y = 15; } xlen = 16; } if (x != 0) { cbits--; } if (y != 0) { ext <<= 1; ext |= signy; cbits--; } xbits -= cbits; assert(x <= 15); assert(y <= 15); x = x * xlen + y; code = h->table[x]; cbits += h->hlen[x]; assert(cbits <= 32); assert(xbits <= 32); putbits2(gfp,code, cbits); putbits2(gfp, ext, xbits); return cbits+xbits;}static intHuffmancodebits(lame_global_flags *gfp,unsigned int tableindex, int start, int end, int *ix){ int i,bits; assert(tableindex < 32); if (!tableindex) return 0; bits=0; for (i = start; i < end; i += 2) { bits +=HuffmanCode(gfp,tableindex, ix[i], ix[i + 1]); } return bits;}/* Note the discussion of huffmancodebits() on pages 28 and 29 of the IS, as well as the definitions of the side information on pages 26 and 27. */static intShortHuffmancodebits(lame_global_flags *gfp,int *ix, gr_info *gi){ lame_internal_flags *gfc=gfp->internal_flags; int bits=0; int region1Start, region2Start; region1Start=3*gfc->scalefac_band.s[3]; if (region1Start > gi->big_values) region1Start = gi->big_values; /* short blocks do not have a region2 */ region2Start=gi->big_values; bits +=Huffmancodebits(gfp,gi->table_select[0], 0, region1Start, ix); bits +=Huffmancodebits(gfp,gi->table_select[1], region1Start, region2Start, ix); return bits;}static intLongHuffmancodebits(lame_global_flags *gfp,int *ix, gr_info *gi){ lame_internal_flags *gfc=gfp->internal_flags; int i, bigvalues,bits=0; int region1Start, region2Start; bigvalues = gi->big_values; assert(0 <= bigvalues && bigvalues <= 576); i = gi->region0_count + 1; assert(i < 23); region1Start = gfc->scalefac_band.l[i]; i += gi->region1_count + 1; assert(i < 23); region2Start = gfc->scalefac_band.l[i]; if (region1Start > bigvalues) region1Start = bigvalues; if (region2Start > bigvalues) region2Start = bigvalues; bits +=Huffmancodebits(gfp,gi->table_select[0], 0, region1Start, ix); bits +=Huffmancodebits(gfp,gi->table_select[1], region1Start, region2Start, ix); bits +=Huffmancodebits(gfp,gi->table_select[2], region2Start, bigvalues, ix); return bits;}static INLINE intwriteMainData(lame_global_flags *gfp, int l3_enc[2][2][576], III_scalefac_t scalefac[2][2] ){ int gr, ch, sfb,data_bits,scale_bits,tot_bits=0; lame_internal_flags *gfc=gfp->internal_flags; III_side_info_t *l3_side; l3_side = &gfc->l3_side; if (gfp->version == 1) { /* MPEG 1 */ for (gr = 0; gr < 2; gr++) { for (ch = 0; ch < gfc->stereo; ch++) { gr_info *gi = &l3_side->gr[gr].ch[ch].tt; int slen1 = slen1_tab[gi->scalefac_compress]; int slen2 = slen2_tab[gi->scalefac_compress]; data_bits=0; scale_bits=0;#ifdef DEBUG hogege = gfc->bs.totbit;#endif if (gi->block_type == SHORT_TYPE) { for (sfb = 0; sfb < SBPSY_s; sfb++) { int slen = sfb < 6 ? slen1 : slen2; assert(scalefac[gr][ch].s[sfb][0]>=0); assert(scalefac[gr][ch].s[sfb][1]>=0); assert(scalefac[gr][ch].s[sfb][2]>=0); putbits2(gfp,scalefac[gr][ch].s[sfb][0], slen); putbits2(gfp,scalefac[gr][ch].s[sfb][1], slen); putbits2(gfp,scalefac[gr][ch].s[sfb][2], slen); scale_bits += 3*slen; } data_bits += ShortHuffmancodebits(gfp,l3_enc[gr][ch], gi); } else { int i; for (i = 0; i < sizeof(scfsi_band) / sizeof(int) - 1; i++) { if (gr != 0 && l3_side->scfsi[ch][i]) continue; for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) { assert(scalefac[gr][ch].l[sfb]>=0); putbits2(gfp,scalefac[gr][ch].l[sfb], sfb < 11 ? slen1 : slen2); scale_bits += sfb < 11 ? slen1 : slen2; } } data_bits +=LongHuffmancodebits(gfp,l3_enc[gr][ch], gi); } data_bits +=huffman_coder_count1(gfp,l3_enc[gr][ch], gi);#ifdef DEBUG DEBUGF("<%ld> ", gfc->bs.totbit-hogege);#endif /* does bitcount in quantize.c agree with actual bit count?*/ assert(data_bits==gi->part2_3_length-gi->part2_length); assert(scale_bits==gi->part2_length); tot_bits += scale_bits + data_bits; } /* for ch */ } /* for gr */ } else { /* MPEG 2 */ gr = 0; for (ch = 0; ch < gfc->stereo; ch++) { gr_info *gi = &l3_side->gr[gr].ch[ch].tt; int i, sfb_partition; assert(gi->sfb_partition_table); data_bits = 0; scale_bits=0; sfb = 0; sfb_partition = 0; if (gi->block_type == SHORT_TYPE) { for (; sfb_partition < 4; sfb_partition++) { int sfbs = gi->sfb_partition_table[sfb_partition] / 3; int slen = gi->slen[sfb_partition]; for (i = 0; i < sfbs; i++, sfb++) { putbits2(gfp,Max(scalefac[gr][ch].s[sfb][0], 0U), slen); putbits2(gfp,Max(scalefac[gr][ch].s[sfb][1], 0U), slen); putbits2(gfp,Max(scalefac[gr][ch].s[sfb][2], 0U), slen); scale_bits += 3*slen; } } data_bits += ShortHuffmancodebits(gfp,l3_enc[gr][ch], gi); } else { for (; sfb_partition < 4; sfb_partition++) { int sfbs = gi->sfb_partition_table[sfb_partition]; int slen = gi->slen[sfb_partition]; for (i = 0; i < sfbs; i++, sfb++) { putbits2(gfp,Max(scalefac[gr][ch].l[sfb], 0U), slen); scale_bits += slen; } } data_bits +=LongHuffmancodebits(gfp,l3_enc[gr][ch], gi); } data_bits +=huffman_coder_count1(gfp,l3_enc[gr][ch], gi); /* does bitcount in quantize.c agree with actual bit count?*/ assert(data_bits==gi->part2_3_length-gi->part2_length); assert(scale_bits==gi->part2_length); tot_bits += scale_bits + data_bits; } /* for ch */ } /* for gf */ return tot_bits;} /* main_data */voidflush_bitstream(lame_global_flags *gfp){ lame_internal_flags *gfc=gfp->internal_flags; int flushbits,remaining_headers; int bitsPerFrame, mean_bits; int last_ptr,first_ptr; first_ptr=gfc->w_ptr; /* first header to add to bitstream */ last_ptr = gfc->h_ptr - 1; /* last header to add to bitstream */ if (last_ptr==-1) last_ptr=MAX_HEADER_BUF-1; /* add this many bits to bitstream so we can flush all headers */ flushbits = gfc->header[last_ptr].write_timing - gfc->bs.totbit; if (flushbits >= 0) { /* if flushbits >= 0, some headers have not yet been written */ /* reduce flushbits by the size of the headers */ remaining_headers= 1+last_ptr - first_ptr; if (last_ptr < first_ptr) remaining_headers= 1+last_ptr - first_ptr + MAX_HEADER_BUF; flushbits -= remaining_headers*8*gfc->sideinfo_len; } /* finally, add some bits so that the last frame is complete * these bits are not necessary to decode the last frame, but * some decoders will ignore last frame if these bits are missing */ getframebits(gfp,&bitsPerFrame,&mean_bits); flushbits += bitsPerFrame; if (flushbits<0) {#if 0 /* if flushbits < 0, this would mean that the buffer looks like: * (data...) last_header (data...) (extra data that should not be here...) */ DEBUGF("last header write_timing = %i \n",gfc->header[last_ptr].write_timing); DEBUGF("first header write_timing = %i \n",gfc->header[first_ptr].write_timing); DEBUGF("bs.totbit: %i \n",gfc->bs.totbit); DEBUGF("first_ptr, last_ptr %i %i \n",first_ptr,last_ptr); DEBUGF("remaining_headers = %i \n",remaining_headers); DEBUGF("bitsperframe: %i \n",bitsPerFrame); DEBUGF("sidelen: %i \n",gfc->sideinfo_len);#endif ERRORF("strange error flushing buffer ... \n"); } else { drain_into_ancillary(gfp,flushbits); } assert (gfc->header[last_ptr].write_timing + bitsPerFrame == gfc->bs.totbit);}void add_dummy_vbrframe(lame_global_flags *gfp,int bitsPerFrame){ lame_internal_flags *gfc = gfp->internal_flags; int bits; gfc->header[gfc->h_ptr].ptr = 0; memset(gfc->header[gfc->h_ptr].buf, 0, gfc->sideinfo_len); bits = bitsPerFrame-8*gfc->sideinfo_len; /* add one byte, cause header to be written */ putbits2(gfp,0,8); /* setup for next header */ gfc->h_ptr = (gfc->h_ptr + 1) & (MAX_HEADER_BUF - 1); gfc->header[gfc->h_ptr].write_timing = bitsPerFrame; drain_into_ancillary(gfp,bits-8);}/* format_bitstream() This is called after a frame of audio has been quantized and coded. It will write the encoded audio to the bitstream. Note that from a layer3 encoder's perspective the bit stream is primarily a series of main_data() blocks, with header and side information inserted at the proper locations to maintain framing. (See Figure A.7 in the IS). */intformat_bitstream(lame_global_flags *gfp, int bitsPerFrame, int l3_enc[2][2][576], III_scalefac_t scalefac[2][2] ){ lame_internal_flags *gfc=gfp->internal_flags; int bits; III_side_info_t *l3_side; l3_side = &gfc->l3_side; drain_into_ancillary(gfp,l3_side->resvDrain_pre); encodeSideInfo2(gfp,bitsPerFrame); bits = 8*gfc->sideinfo_len; bits+=writeMainData(gfp,l3_enc,scalefac); drain_into_ancillary(gfp,l3_side->resvDrain_post); bits += l3_side->resvDrain_post; l3_side->main_data_begin += (bitsPerFrame-bits)/8; if ((l3_side->main_data_begin * 8) != gfc->ResvSize ) { ERRORF("bit reservoir error: \n" "l3_side->main_data_begin: %i \n" "Resvoir size: %i \n" "resv drain (post) %i \n" "resv drain (pre) %i \n" "header and sideinfo: %i \n" "data bits: %i \n" "total bits: %i (remainder: %i) \n" "bitsperframe: %i \n", 8*l3_side->main_data_begin, gfc->ResvSize, l3_side->resvDrain_post, l3_side->resvDrain_pre, 8*gfc->sideinfo_len, bits-l3_side->resvDrain_post-8*gfc->sideinfo_len, bits, bits % 8, bitsPerFrame ); gfc->ResvSize = l3_side->main_data_begin*8; }; assert(gfc->bs.totbit % 8 == 0); if (gfc->bs.totbit > 1000000000UL ) { /* to avoid totbit overflow, (at 8h encoding at 128kbs) lets reset bit counter*/ int i; for (i=0 ; i< MAX_HEADER_BUF ; ++i) gfc->header[i].write_timing -= gfc->bs.totbit; gfc->bs.totbit=0; } return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -