📄 evolve_normal_vector_eno2_sd.m
字号:
function [delta, H1_abs, H2_abs] = evolve_normal_vector_ENO2_SD(phi, dx, dy, Vn_ext, u_ext, v_ext)
%
% Finds the amount of evolution under a force in
% normal direction and a force based on a vector field,
% and using 2nd order accurate ENO scheme.
% Assumes that phi is approximately a signed
% distance function and uses Godunov scheme.
%
% Author: Baris Sumengen sumengen@ece.ucsb.edu
% http://vision.ece.ucsb.edu/~sumengen/
%
delta = zeros(size(phi)+4);
data_ext = zeros(size(phi)+4);
data_ext(3:end-2,3:end-2) = phi;
% Calculate the derivatives (both + and -)
phi_x_minus = zeros(size(phi)+4);
phi_x_plus = zeros(size(phi)+4);
phi_y_minus = zeros(size(phi)+4);
phi_y_plus = zeros(size(phi)+4);
phi_x = zeros(size(phi)+4);
phi_y = zeros(size(phi)+4);
% first scan the rows
for i=1:size(phi,1)
phi_x_minus(i+2,:) = der_ENO2_minus(data_ext(i+2,:), dx);
phi_x_plus(i+2,:) = der_ENO2_plus(data_ext(i+2,:), dx);
phi_x(i+2,:) = select_der_normal_vector_SD(u_ext(i+2,:), Vn_ext(i+2,:), phi_x_minus(i+2,:), phi_x_plus(i+2,:));
end
% then scan the columns
for j=1:size(phi,2)
phi_y_minus(:,j+2) = der_ENO2_minus(data_ext(:,j+2), dy);
phi_y_plus(:,j+2) = der_ENO2_plus(data_ext(:,j+2), dy);
phi_y(:,j+2) = select_der_normal_vector_SD(v_ext(:,j+2), Vn_ext(:,j+2), phi_y_minus(:,j+2), phi_y_plus(:,j+2));
end
abs_grad_phi = sqrt(phi_x.^2 + phi_y.^2);
H1_abs = abs(u_ext+Vn_ext.*phi_x);
H2_abs = abs(v_ext+Vn_ext.*phi_x);
H1_abs = H1_abs(3:end-2,3:end-2);
H2_abs = H2_abs(3:end-2,3:end-2);
delta = u_ext.*phi_x + v_ext.*phi_y + Vn_ext.*abs_grad_phi;
delta = delta(3:end-2,3:end-2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -