⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 output.quadratic.30.log

📁 贝叶斯优化算法是一种新的演化算法
💻 LOG
字号:

===============================================
 Simple Bayesian Optimization Algorithm in C++
 Version 1.0 (Released in March 1999)
 Copyright (c) 1999 Martin Pelikan
 Author: Martin Pelikan
-----------------------------------------------
 Parameter values from: input.quadratic.30
===============================================

Parameter Values:

Description                                                Identifier                 Type       Value   
----------------------------------------------------------------------------------------------------------------
Size of the population                                     populationSize             long       300
The number of parents to select (% from population)        parentsPercentage          float      50.000000
Size of offspring to create (% from population)            offspringPercentage        float      50.000000

Number of fitness function to use                          fitnessFunction            int        0 (Quadratic 0.9 0 0 1)
Size of the problem (of one dimension)                     problemSize                int        30

Maximal Number of Generations to Perform                   maxNumberOfGenerations     long       40
Maximal Number of Fitness Calls (-1 when unbounded)        maxFitnessCalls            long       -1
Termination threshold for the univ. freq. (-1 is ignore)   epsilon                    float      0.010000
Stop if the optimum was found?                             stopWhenFoundOptimum       char       0 (No)
Percentage of opt. and nonopt. ind. threshold (-1 is ignore) maxOptimal                 float      -1.000000

Maximal number of incoming edges in dep. graph for the BOA maxIncoming                int        1

Wait for enter after printing out generation statistics?   pause                      char       0

Output file name                                           outputFile                 char*      output.quadratic.30
Threshold for guidance (closeness to 0,1)                  guidanceThreshold          float      0.300000

Random Seed                                                randSeed                   long       123
--------------------------------------------------------
Generation                   : 0
Fitness evaluations          : 300
Fitness (max/avg/min)        : (12.400000 7.184000 1.800000)
Percentage of optima in pop. : 0.00
Population bias              : ..............................
Best solution in the pop.    : 001111110011001111011100001000
--------------------------------------------------------
Generation                   : 1
Fitness evaluations          : 450
Fitness (max/avg/min)        : (12.900000 8.625000 2.800000)
Percentage of optima in pop. : 0.00
Population bias              : ..............................
Best solution in the pop.    : 111111111100111110011111111111
--------------------------------------------------------
Generation                   : 2
Fitness evaluations          : 600
Fitness (max/avg/min)        : (13.500000 9.948667 4.800000)
Percentage of optima in pop. : 0.00
Population bias              : ..............................
Best solution in the pop.    : 110011110011100000111111001111
--------------------------------------------------------
Generation                   : 3
Fitness evaluations          : 750
Fitness (max/avg/min)        : (14.700000 11.061333 7.600000)
Percentage of optima in pop. : 0.00
Population bias              : ..............................
Best solution in the pop.    : 111111111111000011110011111111
--------------------------------------------------------
Generation                   : 4
Fitness evaluations          : 900
Fitness (max/avg/min)        : (14.700000 12.063666 8.700000)
Percentage of optima in pop. : 0.00
Population bias              : ..............................
Best solution in the pop.    : 111111111111000011110011111111
--------------------------------------------------------
Generation                   : 5
Fitness evaluations          : 1050
Fitness (max/avg/min)        : (14.700000 12.892999 8.500000)
Percentage of optima in pop. : 0.00
Population bias              : .1............................
Best solution in the pop.    : 111111111111000011110011111111
--------------------------------------------------------
Generation                   : 6
Fitness evaluations          : 1200
Fitness (max/avg/min)        : (14.799999 13.556666 10.599999)
Percentage of optima in pop. : 0.00
Population bias              : 11............................
Best solution in the pop.    : 111111110011111111001111111111
--------------------------------------------------------
Generation                   : 7
Fitness evaluations          : 1350
Fitness (max/avg/min)        : (14.900000 14.146333 11.499999)
Percentage of optima in pop. : 0.00
Population bias              : 11............................
Best solution in the pop.    : 111111001111111111111111111111
--------------------------------------------------------
Generation                   : 8
Fitness evaluations          : 1500
Fitness (max/avg/min)        : (14.900000 14.524999 13.999998)
Percentage of optima in pop. : 0.00
Population bias              : 111111....11....11..11....11..
Best solution in the pop.    : 111111001111111111111111111111
--------------------------------------------------------
Generation                   : 9
Fitness evaluations          : 1650
Fitness (max/avg/min)        : (15.000000 14.665000 14.200000)
Percentage of optima in pop. : 0.33
Population bias              : 11111111111111..111111111111..
Best solution in the pop.    : 111111111111111111111111111111
--------------------------------------------------------
Generation                   : 10
Fitness evaluations          : 1800
Fitness (max/avg/min)        : (15.000000 14.767000 14.400000)
Percentage of optima in pop. : 2.33
Population bias              : 111111111111111111111111111111
Best solution in the pop.    : 111111111111111111111111111111
--------------------------------------------------------
Generation                   : 11
Fitness evaluations          : 1950
Fitness (max/avg/min)        : (15.000000 14.840333 14.499999)
Percentage of optima in pop. : 7.33
Population bias              : 111111111111111111111111111111
Best solution in the pop.    : 111111111111111111111111111111
--------------------------------------------------------
Generation                   : 12
Fitness evaluations          : 2100
Fitness (max/avg/min)        : (15.000000 14.903000 14.699999)
Percentage of optima in pop. : 20.67
Population bias              : 111111111111111111111111111111
Best solution in the pop.    : 111111111111111111111111111111
--------------------------------------------------------
Generation                   : 13
Fitness evaluations          : 2250
Fitness (max/avg/min)        : (15.000000 14.943000 14.699999)
Percentage of optima in pop. : 50.00
Population bias              : 111111111111111111111111111111
Best solution in the pop.    : 111111111111111111111111111111
--------------------------------------------------------
Generation                   : 14
Fitness evaluations          : 2400
Fitness (max/avg/min)        : (15.000000 15.000000 15.000000)
Percentage of optima in pop. : 100.00
Population bias              : 111111111111111111111111111111
Best solution in the pop.    : 111111111111111111111111111111

=================================================================
FINAL STATISTICS
Termination reason           : Bit convergence (with threshold epsilon)
Generations performed        : 14
Fitness evaluations          : 2400
Fitness (max/avg/min)        : (15.000000 15.000000 15.000000)
Percentage of optima in pop. : 100.00
Population bias              : 111111111111111111111111111111
Best solution in the pop.    : 111111111111111111111111111111

The End.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -