📄 modfiyga.c
字号:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define POPSIZE 50
#define MAXGENS 500
#define NVARS 2
#define PXOVER 0.65
#define PMUTATION 0.15
#define TRUE 1
#define FALSE 0
#define pi 3.1415926
int generation;
int cur_best;
FILE *galog;
struct genotype
{
double gene[NVARS];
double fitness;
double upper[NVARS];
double lower[NVARS];
double rfitness;
double cfitness;
};
struct genotype population[POPSIZE+1];
struct genotype newpopulation[POPSIZE+1];
void initialize(void);
double randval(double,double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void select(void);
void crossover(void);
void Xover(int,int);
void swap(double *,double *);
void mutate(int);
void report(void);
void transfer(void);
void center(void);
void adapt(int,int,double,double);
void initialize(void)
{
FILE *infile;
int i,j;
double lbound,ubound;
if((infile=fopen("gadata.txt","r"))==NULL)
{
fprintf(galog,"\nCannot open input file!\n");
exit(1);
}
for (i=0;i<NVARS;i++)
{
fscanf(infile,"%lf",&lbound);
fscanf(infile,"%lf",&ubound);
for(j=0;j<POPSIZE;j++)
{
population[j].fitness=0;
population[j].rfitness=0;
population[j].cfitness=0;
population[j].lower[i]=lbound;
population[j].upper[i]=ubound;
population[j].gene[i]=randval(population[j].lower[i],
population[j].upper[i]);
}
}
fclose(infile);
}
double randval(double low,double high)
{
double val;
val=((double)(rand()%10000)/10000.0)*(high-low)+low;
return(val);
}
void evaluate(void)
{
int mem;
int i;
double x[NVARS+1];
for(mem=0;mem<POPSIZE;mem++)
{
for(i=0;i<NVARS;i++)
x[i+1]=population[mem].gene[i];
population[mem].fitness=40-(0.1*sqrt((x[1]-25)*(x[1]-25)+(x[2]-40)*(x[2]-40))
+10-10*sin(0.5*pi*x[1])*cos(0.75*pi*x[2]));
/*x[1]*sin(10*pi*x[1])+2.0;*/
/*0.1*sqrt((x[1]-25)*(x[1]-25)+(x[2]-40)*(x[2]-40))+10-10*sin(0.5*pi*x[1])
*cos(0.75*pi*y); */
/*(x[1]*x[1])-(x[1]*x[2])+x[3]; */
/* 20-(x[1]*x[1]+x[2]*x[2]-x[1]*x[2]-10*x[1]-4*x[2])*/
}
}
void keep_the_best()
{
int mem;
int i;
cur_best=0;
for(mem=0;mem<POPSIZE;mem++)
{
if(population[mem].fitness>population[POPSIZE].fitness)
{
cur_best=mem;
population[POPSIZE].fitness=population[mem].fitness;
}
}
for(i=0;i<NVARS;i++)
population[POPSIZE].gene[i]=population[cur_best].gene[i];
}
void elitist()
{
int i;
double best,worst;
int best_mem,worst_mem;
best=population[0].fitness;
worst=population[0].fitness;
for(i=0;i<POPSIZE-1;++i)
{
if(population[i].fitness>population[i+1].fitness)
{
if(population[i].fitness>=best)
{
best=population[i].fitness;
best_mem=i;
}
if(population[i+1].fitness<=worst)
{
worst=population[i+1].fitness;
worst_mem=i+1;
}
}
else
{
if(population[i].fitness<=worst)
{
worst=population[i].fitness;
worst_mem=i;
}
if(population[i+1].fitness>=best)
{
best=population[i+1].fitness;
best_mem=i+1;
}
}
}
if(best>=population[POPSIZE].fitness)
{
for(i=0;i<NVARS;i++)
population[POPSIZE].gene[i]=population[best_mem].gene[i];
population[POPSIZE].fitness=population[best_mem].fitness;
}
else
{
for(i=0;i<NVARS;i++)
population[worst_mem].gene[i]=population[POPSIZE].gene[i];
population[worst_mem].fitness=population[POPSIZE].fitness;
}
}
void select(void)
{
int mem,i,j;
double sum=0;
double p;
for(mem=0;mem<POPSIZE;mem++)
{
sum+=population[mem].fitness;
}
for(mem=0;mem<POPSIZE;mem++)
{
population[mem].rfitness=population[mem].fitness/sum;
}
population[0].cfitness=population[0].rfitness;
for(mem=1;mem<POPSIZE;mem++)
{
population[mem].cfitness=population[mem-1].cfitness+population[mem].rfitness;
}
for(i=0;i<POPSIZE;i++)
{
p=rand()%10000/10000.0;
if(p<population[0].cfitness)
newpopulation[i]=population[0];
else
{
for(j=0;j<POPSIZE;j++)
if(p>=population[j].cfitness&&p<population[j+1].cfitness)
newpopulation[i]=population[j+1];
}
}
for(i=0;i<POPSIZE;i++)
population[i]=newpopulation[i];
}
void crossover(void)
{
int mem,one;
int first=0;
double x;
for(mem=0;mem<POPSIZE;++mem)
{
x=rand()%1000/1000.0;
if(x<PXOVER)
{
++first;
if(first%2==0)
Xover(one,mem);
else
one=mem;
}
}
}
void Xover(int one,int two)
{
int i;
int point;
double onet[NVARS],twot[NVARS],a[NVARS];
if(NVARS>1)
{
if(NVARS==2)
point=0;
else
point=(rand()%(NVARS-1));
for(i=point;i<NVARS;i++)
{/* swap(&population[one].gene[i],&population[two].gene[i]);*/
a[i]=rand()%10000/10000.0;
onet[i]=population[one].gene[i];
twot[i]=population[two].gene[i];
population[one].gene[i]=twot[i]+(onet[i]-twot[i])*a[i];
population[two].gene[i]=onet[i]+(twot[i]-onet[i])*a[i];
}
}
}
/*void swap(double *x,double *y)
{
double temp;
temp=*x;
*x=*y;
*y=temp;
}*/
void mutate(int gen)
{
int i,j;
double lbound,hbound;
double x;
for(i=0;i<POPSIZE;i++)
for(j=0;j<NVARS;j++)
{
x=rand()%1000/1000.0;
if(x<PMUTATION)
{ lbound=population[i].lower[j];
hbound=population[i].upper[j];
if(gen<100)
population[i].gene[j]=randval(lbound,hbound);
else
adapt(i,j,lbound,hbound);
}
}
}
void adapt(int i,int j,double low,double high)
{int T,del,b;
double r;
r=rand()%10000/10000.0;
T=1-population[i].fitness/population[POPSIZE].fitness;
b=(1-T)*(1-T);
if (r>0.5)
{del=(low-population[i].gene[j])*(1-pow(r,b));
population[i].gene[j]=del+population[i].gene[j];
}
else
{ del=(population[i].gene[j]-high)*(1-pow(r,b));
population[i].gene[j]=population[i].gene[j]-del;
}
}
void report(void)
{
int i;
double best_val;
double avg;
double stddev;
double sum_square;
double square_sum;
double sum;
sum=0.0;
sum_square=0.0;
for(i=0;i<POPSIZE;i++)
{
sum+=population[i].fitness;
sum_square+=population[i].fitness*population[i].fitness;
}
avg=sum/(double)POPSIZE;
square_sum=avg*avg*(double)POPSIZE;
stddev=sqrt(abs((sum_square-square_sum)/(POPSIZE-1)));
best_val=population[POPSIZE].fitness;
fprintf(galog,"\n%5d, %6.4f,%6.4f,%6.4f \n\n",generation,best_val,avg,stddev);
}
void main(void)
{
int i;
srand(time(NULL));
if((galog=fopen("galog.txt","w"))==NULL)
{
exit(1);
}
generation=0;
fprintf(galog,"\n generation best average stadard\n");
fprintf(galog,"number value fitness deviation\n");
initialize();
evaluate();
keep_the_best();
while(generation<MAXGENS)
{
generation++;
select();
crossover();
mutate(generation);
report();
evaluate();
elitist();
}
fprintf(galog,"\n Simulation completed\n");
fprintf(galog,"\n Best member:\n");
for(i=0;i<NVARS;i++)
{
fprintf(galog,"\n var(%d)=%3.4f",i,population[POPSIZE].gene[i]);
}
fprintf(galog,"\n\n best fitness=%3.4f",population[POPSIZE].fitness);
fclose(galog);
printf("Success\n");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -