📄 vector_expression.hpp
字号:
#endif BOOST_UBLAS_INLINE const_iterator begin () const { return find (0); } BOOST_UBLAS_INLINE const_iterator end () const { return find (size ()); } // Reverse iterator#ifdef BOOST_MSVC_STD_ITERATOR typedef reverse_iterator_base<const_iterator, value_type, const_reference> const_reverse_iterator;#else typedef reverse_iterator_base<const_iterator> const_reverse_iterator;#endif BOOST_UBLAS_INLINE const_reverse_iterator rbegin () const { return const_reverse_iterator (end ()); } BOOST_UBLAS_INLINE const_reverse_iterator rend () const { return const_reverse_iterator (begin ()); } private: expression1_closure_type e1_; expression2_closure_type e2_; }; template<class E1, class E2, class F, class C1 = typename E1::const_closure_type> struct vector_binary_scalar1_traits { typedef vector_binary_scalar1<E1, E2, F, C1> expression_type; // allow E1 to be builtin type#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG typedef expression_type result_type;#else typedef typename E2::vector_temporary_type result_type;#endif };#ifdef BOOST_UBLAS_USE_SCALAR_ET // (s * v) [i] = scalar_expression * v [i] template<class E1, class E2> BOOST_UBLAS_INLINE typename vector_binary_scalar1_traits<E1, E2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type, BOOST_UBLAS_TYPENAME E2::value_type> >::result_type operator * (const scalar_expression<E1> &e1, const vector_expression<E2> &e2) { typedef BOOST_UBLAS_TYPENAME vector_binary_scalar1_traits<E1, E2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type, BOOST_UBLAS_TYPENAME E2::value_type> >::expression_type expression_type; return expression_type (e1 (), e2 ()); }#endif // (t * v) [i] = t * v [i] template<class T1, class E2> BOOST_UBLAS_INLINE typename vector_binary_scalar1_traits<const T1, E2, scalar_multiplies<T1, BOOST_UBLAS_TYPENAME E2::value_type>, scalar_reference<const T1> >::result_type operator * (const T1 &e1, const vector_expression<E2> &e2) { typedef BOOST_UBLAS_TYPENAME vector_binary_scalar1_traits<const T1, E2, scalar_multiplies<T1, BOOST_UBLAS_TYPENAME E2::value_type>, scalar_reference<const T1> >::expression_type expression_type; return expression_type (e1, e2 ()); } template<class E1, class E2, class F, class C2> class vector_binary_scalar2: public vector_expression<vector_binary_scalar2<E1, E2, F, C2> > { public:#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS BOOST_UBLAS_USING vector_expression<vector_binary_scalar2<E1, E2, F, C2> >::operator ();#endif typedef typename E1::size_type size_type; typedef typename E1::difference_type difference_type; typedef typename F::result_type value_type; typedef value_type const_reference; typedef const_reference reference; private: typedef const value_type *const_pointer; typedef F functor_type; typedef E1 expression1_type; typedef E2 expression2_type; typedef typename E1::const_closure_type expression1_closure_type; typedef C2 expression2_closure_type; typedef vector_binary_scalar2<E1, E2, F, C2> self_type; public: typedef const self_type const_closure_type; typedef const_closure_type closure_type; typedef unknown_storage_tag storage_category; // Construction and destruction BOOST_UBLAS_INLINE vector_binary_scalar2 (): e1_ (), e2_ () {} BOOST_UBLAS_INLINE vector_binary_scalar2 (const expression1_type &e1, const expression2_type &e2): e1_ (e1), e2_ (e2) {} // Accessors BOOST_UBLAS_INLINE size_type size () const { return e1_.size (); } public: // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i) const { return functor_type::apply (e1_ (i), expression2_type (e2_)); } BOOST_UBLAS_INLINE const_reference operator [] (size_type i) const { return functor_type::apply (e1_ [i], expression2_type (e2_)); } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const vector_binary_scalar2 &vbs2) const { return (*this).e1_.same_closure (vbs2.e1_) && (*this).e2_.same_closure (vbs2.e2_); } // Iterator types private: typedef typename expression1_type::const_iterator const_iterator1_type; typedef expression2_type const_iterator2_type; public:#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_const_iterator<const_closure_type, typename const_iterator2_type::iterator_category> const_iterator; typedef const_iterator iterator;#else class const_iterator; typedef const_iterator iterator;#endif // Element lookup BOOST_UBLAS_INLINE const_iterator find (size_type i) const {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR const_iterator1_type it (e1_.find (i)); return const_iterator (*this, it.index ());#else return const_iterator (*this, e1_.find (i), const_iterator2_type (e2_));#endif } // Iterator enhances the iterator of the referenced vector expression // with the binary functor.#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator: public container_const_reference<vector_binary_scalar2>,#ifndef BOOST_UBLAS_NO_ITERATOR_BASE_TRAITS public iterator_base_traits<typename E1::const_iterator::iterator_category>::template iterator_base<const_iterator, value_type>::type {#else public random_access_iterator_base<typename E1::const_iterator::iterator_category, const_iterator, value_type> {#endif public: typedef typename E1::const_iterator::iterator_category iterator_category;#ifdef BOOST_MSVC_STD_ITERATOR typedef const_reference reference;#else typedef typename vector_binary_scalar2::difference_type difference_type; typedef typename vector_binary_scalar2::value_type value_type; typedef typename vector_binary_scalar2::const_reference reference; typedef typename vector_binary_scalar2::const_pointer pointer;#endif // Construction and destruction BOOST_UBLAS_INLINE const_iterator (): container_const_reference<self_type> (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator (const self_type &vbs, const const_iterator1_type &it1, const const_iterator2_type &it2): container_const_reference<self_type> (vbs), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); // FIXME: we shouldn't compare floats // BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return functor_type::apply (*it1_, it2_); } // Index BOOST_UBLAS_INLINE size_type index () const { return it1_.index (); } // Assignment BOOST_UBLAS_INLINE const_iterator &operator = (const const_iterator &it) { container_const_reference<self_type>::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); // FIXME: we shouldn't compare floats // BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); // FIXME: we shouldn't compare floats // BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: const_iterator1_type it1_; const_iterator2_type it2_; };#endif BOOST_UBLAS_INLINE const_iterator begin () const { return find (0); } BOOST_UBLAS_INLINE const_iterator end () const { return find (size ()); } // Reverse iterator#ifdef BOOST_MSVC_STD_ITERATOR typedef reverse_iterator_base<const_iterator, value_type, const_reference> const_reverse_iterator;#else typedef reverse_iterator_base<const_iterator> const_reverse_iterator;#endif BOOST_UBLAS_INLINE const_reverse_iterator rbegin () const { return const_reverse_iterator (end ()); } BOOST_UBLAS_INLINE const_reverse_iterator rend () const { return const_reverse_iterator (begin ()); } private: expression1_closure_type e1_; expression2_closure_type e2_; }; template<class E1, class E2, class F, class C2 = typename E2::const_closure_type> struct vector_binary_scalar2_traits { typedef vector_binary_scalar2<E1, E2, F, C2> expression_type; // allow E2 to be builtin type#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG typedef expression_type result_type;#else typedef typename E1::vector_temporary_type result_type;#endif };#ifdef BOOST_UBLAS_USE_SCALAR_ET // (v * s) [i] = v [i] * scalar_expression template<class E1, class E2> BOOST_UBLAS_INLINE typename vector_binary_scalar2_traits<E1, E2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type, BOOST_UBLAS_TYPENAME E2::value_type> >::result_type operator * (const vector_expression<E1> &e1, const scalar_expression<E2> &e2) { typedef BOOST_UBLAS_TYPENAME vector_binary_scalar2_traits<E1, E2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type, BOOST_UBLAS_TYPENAME E2::value_type> >::expression_type expression_type; return expression_type (e1 (), e2 ()); } // (v / s) [i] = v [i] / scalar_expression template<class E1, class E2> BOOST_UBLAS_INLINE typename vector_binary_scalar2_traits<E1, E2, scalar_divides<BOOST_UBLAS_TYPENAME E1::value_type, BOOST_UBLAS_TYPENAME E2::value_type> >::result_type operator / (const vector_expression<E1> &e1, const scalar_expression<E2> &e2) { typedef BOOST_UBLAS_TYPENAME vector_binary_scalar2_traits<E1, E2, scalar_divides<BOOST_UBLAS_TYPENAME E1::value_type, BOOST_UBLAS_TYPENAME E2::value_type> >::expression_type expression_type; return expression_type (e1 (), e2 ()); }#endif // (v * t) [i] = v [i] * t template<class E1, class T2> BOOST_UBLAS_INLINE typename vector_binary_scalar2_traits<E1, const T2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type, T2>, scalar_reference<const T2> >::result_type operator * (const vector_expression<E1> &e1, const T2 &e2) { typedef BOOST_UBLAS_TYPENAME vector_binary_scalar2_traits<E1, const T2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type, T2>, scalar_reference<const T2> >::expression_type expression_type; return expression_type (e1 (), e2); } // (v / t) [i] = v [i] / t template<class E1, class T2> BOOST_UBLAS_INLINE typename vector_binary_scalar2_traits<E1, const T2, scalar_divides<BOOST_UBLAS_TYPENAME E1::value_type, T2>, scalar_reference<const T2> >::result_type operator / (const vector_expression<E1> &e1, const T2 &e2) { typedef BOOST_UBLAS_TYPENAME vector_binary_scalar2_traits<E1, const T2, scalar_divides<BOOST_UBLAS_TYPENAME E1::value_type, T2>, scalar_reference<const T2> >::expression_type expression_type; return expression_type (e1 (), e2); } template<class E, class F> class vector_scalar_unary: public scalar_expression<vector_scalar_unary<E, F> > { public: typedef typename F::size_type size_type; typedef typename F::difference_type difference_type; typedef typename F::result_type value_type; private: typedef E expression_type; typedef F functor_type; typedef typename E::const_closure_type expression_closure_type; typedef typename E::const_iterator::iterator_category iterator_category; typedef vector_scalar_unary<E, F> self_type; public: typedef c
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -