⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vector_expression.hpp

📁 CGAL is a collaborative effort of several sites in Europe and Israel. The goal is to make the most i
💻 HPP
📖 第 1 页 / 共 5 页
字号:
#endif        BOOST_UBLAS_INLINE        const_iterator begin () const {            return find (0);         }        BOOST_UBLAS_INLINE        const_iterator end () const {            return find (size ());         }        // Reverse iterator#ifdef BOOST_MSVC_STD_ITERATOR        typedef reverse_iterator_base<const_iterator, value_type, const_reference> const_reverse_iterator;#else        typedef reverse_iterator_base<const_iterator> const_reverse_iterator;#endif        BOOST_UBLAS_INLINE        const_reverse_iterator rbegin () const {            return const_reverse_iterator (end ());        }        BOOST_UBLAS_INLINE        const_reverse_iterator rend () const {            return const_reverse_iterator (begin ());        }    private:        expression1_closure_type e1_;        expression2_closure_type e2_;    };    template<class E1, class E2, class F, class C1 = typename E1::const_closure_type>    struct vector_binary_scalar1_traits {        typedef vector_binary_scalar1<E1, E2, F, C1> expression_type;   // allow E1 to be builtin type#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG        typedef expression_type result_type;#else        typedef typename E2::vector_temporary_type result_type;#endif    };#ifdef BOOST_UBLAS_USE_SCALAR_ET    // (s * v) [i] = scalar_expression * v [i]    template<class E1, class E2>    BOOST_UBLAS_INLINE    typename vector_binary_scalar1_traits<E1, E2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type, BOOST_UBLAS_TYPENAME E2::value_type> >::result_type    operator * (const scalar_expression<E1> &e1,                const vector_expression<E2> &e2) {        typedef BOOST_UBLAS_TYPENAME vector_binary_scalar1_traits<E1, E2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type, BOOST_UBLAS_TYPENAME E2::value_type> >::expression_type expression_type;        return expression_type (e1 (), e2 ());    }#endif    // (t * v) [i] = t * v [i]    template<class T1, class E2>    BOOST_UBLAS_INLINE    typename vector_binary_scalar1_traits<const T1, E2, scalar_multiplies<T1, BOOST_UBLAS_TYPENAME E2::value_type>, scalar_reference<const T1> >::result_type    operator * (const T1 &e1,                const vector_expression<E2> &e2) {        typedef BOOST_UBLAS_TYPENAME vector_binary_scalar1_traits<const T1, E2, scalar_multiplies<T1, BOOST_UBLAS_TYPENAME E2::value_type>, scalar_reference<const T1> >::expression_type expression_type;        return expression_type (e1, e2 ());    }    template<class E1, class E2, class F, class C2>    class vector_binary_scalar2:        public vector_expression<vector_binary_scalar2<E1, E2, F, C2> > {    public:#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS        BOOST_UBLAS_USING vector_expression<vector_binary_scalar2<E1, E2, F, C2> >::operator ();#endif        typedef typename E1::size_type size_type;        typedef typename E1::difference_type difference_type;        typedef typename F::result_type value_type;        typedef value_type const_reference;        typedef const_reference reference;    private:        typedef const value_type *const_pointer;        typedef F functor_type;        typedef E1 expression1_type;        typedef E2 expression2_type;        typedef typename E1::const_closure_type expression1_closure_type;        typedef C2 expression2_closure_type;        typedef vector_binary_scalar2<E1, E2, F, C2> self_type;    public:        typedef const self_type const_closure_type;        typedef const_closure_type closure_type;        typedef unknown_storage_tag storage_category;        // Construction and destruction        BOOST_UBLAS_INLINE        vector_binary_scalar2 ():            e1_ (), e2_ () {}        BOOST_UBLAS_INLINE        vector_binary_scalar2 (const expression1_type &e1, const expression2_type &e2):            e1_ (e1), e2_ (e2) {}        // Accessors        BOOST_UBLAS_INLINE        size_type size () const {            return e1_.size ();         }    public:        // Element access        BOOST_UBLAS_INLINE        const_reference operator () (size_type i) const {            return functor_type::apply (e1_ (i), expression2_type (e2_));        }        BOOST_UBLAS_INLINE        const_reference operator [] (size_type i) const {            return functor_type::apply (e1_ [i], expression2_type (e2_));        }        // Closure comparison        BOOST_UBLAS_INLINE        bool same_closure (const vector_binary_scalar2 &vbs2) const {            return (*this).e1_.same_closure (vbs2.e1_) &&                   (*this).e2_.same_closure (vbs2.e2_);        }        // Iterator types    private:        typedef typename expression1_type::const_iterator const_iterator1_type;        typedef expression2_type const_iterator2_type;    public:#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR        typedef indexed_const_iterator<const_closure_type, typename const_iterator2_type::iterator_category> const_iterator;        typedef const_iterator iterator;#else        class const_iterator;        typedef const_iterator iterator;#endif        // Element lookup        BOOST_UBLAS_INLINE        const_iterator find (size_type i) const {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR            const_iterator1_type it (e1_.find (i));            return const_iterator (*this, it.index ());#else            return const_iterator (*this, e1_.find (i), const_iterator2_type (e2_));#endif        }        // Iterator enhances the iterator of the referenced vector expression        // with the binary functor.#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR        class const_iterator:            public container_const_reference<vector_binary_scalar2>,#ifndef BOOST_UBLAS_NO_ITERATOR_BASE_TRAITS            public iterator_base_traits<typename E1::const_iterator::iterator_category>::template                        iterator_base<const_iterator, value_type>::type {#else            public random_access_iterator_base<typename E1::const_iterator::iterator_category,                                               const_iterator, value_type> {#endif                                                       public:            typedef typename E1::const_iterator::iterator_category iterator_category;#ifdef BOOST_MSVC_STD_ITERATOR            typedef const_reference reference;#else            typedef typename vector_binary_scalar2::difference_type difference_type;            typedef typename vector_binary_scalar2::value_type value_type;            typedef typename vector_binary_scalar2::const_reference reference;            typedef typename vector_binary_scalar2::const_pointer pointer;#endif            // Construction and destruction            BOOST_UBLAS_INLINE            const_iterator ():                container_const_reference<self_type> (), it1_ (), it2_ () {}            BOOST_UBLAS_INLINE            const_iterator (const self_type &vbs, const const_iterator1_type &it1, const const_iterator2_type &it2):                container_const_reference<self_type> (vbs), it1_ (it1), it2_ (it2) {}            // Arithmetic            BOOST_UBLAS_INLINE            const_iterator &operator ++ () {                ++ it1_;                return *this;            }            BOOST_UBLAS_INLINE            const_iterator &operator -- () {                -- it1_;                return *this;            }            BOOST_UBLAS_INLINE            const_iterator &operator += (difference_type n) {                it1_ += n;                return *this;            }            BOOST_UBLAS_INLINE            const_iterator &operator -= (difference_type n) {                it1_ -= n;                return *this;            }            BOOST_UBLAS_INLINE            difference_type operator - (const const_iterator &it) const {                BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());                // FIXME: we shouldn't compare floats                // BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());                return it1_ - it.it1_;            }            // Dereference            BOOST_UBLAS_INLINE            const_reference operator * () const {                return functor_type::apply (*it1_, it2_);            }            // Index            BOOST_UBLAS_INLINE            size_type index () const {                return it1_.index ();            }            // Assignment            BOOST_UBLAS_INLINE            const_iterator &operator = (const const_iterator &it) {                container_const_reference<self_type>::assign (&it ());                it1_ = it.it1_;                it2_ = it.it2_;                return *this;            }            // Comparison            BOOST_UBLAS_INLINE            bool operator == (const const_iterator &it) const {                BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());                // FIXME: we shouldn't compare floats                // BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());                return it1_ == it.it1_;            }            BOOST_UBLAS_INLINE            bool operator < (const const_iterator &it) const {                BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());                // FIXME: we shouldn't compare floats                // BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());                return it1_ < it.it1_;            }        private:            const_iterator1_type it1_;            const_iterator2_type it2_;        };#endif        BOOST_UBLAS_INLINE        const_iterator begin () const {            return find (0);        }        BOOST_UBLAS_INLINE        const_iterator end () const {            return find (size ());        }        // Reverse iterator#ifdef BOOST_MSVC_STD_ITERATOR        typedef reverse_iterator_base<const_iterator, value_type, const_reference> const_reverse_iterator;#else        typedef reverse_iterator_base<const_iterator> const_reverse_iterator;#endif        BOOST_UBLAS_INLINE        const_reverse_iterator rbegin () const {            return const_reverse_iterator (end ());        }        BOOST_UBLAS_INLINE        const_reverse_iterator rend () const {            return const_reverse_iterator (begin ());        }    private:        expression1_closure_type e1_;        expression2_closure_type e2_;    };    template<class E1, class E2, class F, class C2 = typename E2::const_closure_type>    struct vector_binary_scalar2_traits {        typedef vector_binary_scalar2<E1, E2, F, C2> expression_type;   // allow E2 to be builtin type#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG        typedef expression_type result_type;#else        typedef typename E1::vector_temporary_type result_type;#endif    };#ifdef BOOST_UBLAS_USE_SCALAR_ET    // (v * s) [i] = v [i] * scalar_expression    template<class E1, class E2>    BOOST_UBLAS_INLINE    typename vector_binary_scalar2_traits<E1, E2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type, BOOST_UBLAS_TYPENAME E2::value_type> >::result_type    operator * (const vector_expression<E1> &e1,                const scalar_expression<E2> &e2) {        typedef BOOST_UBLAS_TYPENAME vector_binary_scalar2_traits<E1, E2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type, BOOST_UBLAS_TYPENAME E2::value_type> >::expression_type expression_type;        return expression_type (e1 (), e2 ());    }    // (v / s) [i] = v [i] / scalar_expression    template<class E1, class E2>    BOOST_UBLAS_INLINE    typename vector_binary_scalar2_traits<E1, E2, scalar_divides<BOOST_UBLAS_TYPENAME E1::value_type, BOOST_UBLAS_TYPENAME E2::value_type> >::result_type    operator / (const vector_expression<E1> &e1,                const scalar_expression<E2> &e2) {        typedef BOOST_UBLAS_TYPENAME vector_binary_scalar2_traits<E1, E2, scalar_divides<BOOST_UBLAS_TYPENAME E1::value_type, BOOST_UBLAS_TYPENAME E2::value_type> >::expression_type expression_type;        return expression_type (e1 (), e2 ());    }#endif    // (v * t) [i] = v [i] * t    template<class E1, class T2>    BOOST_UBLAS_INLINE    typename vector_binary_scalar2_traits<E1, const T2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type, T2>, scalar_reference<const T2> >::result_type    operator * (const vector_expression<E1> &e1,                const T2 &e2) {        typedef BOOST_UBLAS_TYPENAME vector_binary_scalar2_traits<E1, const T2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type, T2>, scalar_reference<const T2> >::expression_type expression_type;        return expression_type (e1 (), e2);    }    // (v / t) [i] = v [i] / t    template<class E1, class T2>    BOOST_UBLAS_INLINE    typename vector_binary_scalar2_traits<E1, const T2, scalar_divides<BOOST_UBLAS_TYPENAME E1::value_type, T2>, scalar_reference<const T2> >::result_type    operator / (const vector_expression<E1> &e1,                const T2 &e2) {        typedef BOOST_UBLAS_TYPENAME vector_binary_scalar2_traits<E1, const T2, scalar_divides<BOOST_UBLAS_TYPENAME E1::value_type, T2>, scalar_reference<const T2> >::expression_type expression_type;        return expression_type (e1 (), e2);    }    template<class E, class F>    class vector_scalar_unary:        public scalar_expression<vector_scalar_unary<E, F> > {    public:        typedef typename F::size_type size_type;        typedef typename F::difference_type difference_type;        typedef typename F::result_type value_type;    private:        typedef E expression_type;        typedef F functor_type;        typedef typename E::const_closure_type expression_closure_type;        typedef typename E::const_iterator::iterator_category iterator_category;        typedef vector_scalar_unary<E, F> self_type;    public:        typedef c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -