📄 matrix.hpp
字号:
#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS BOOST_UBLAS_USING matrix_expression<vector_of_vector<T, F, A> >::operator ();#endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef A array_type; private: typedef T *pointer; typedef F functor_type; typedef vector_of_vector<T, F, A> self_type; public:#ifndef BOOST_UBLAS_CT_REFERENCE_BASE_TYPEDEFS typedef const matrix_const_reference<const self_type> const_closure_type;#else typedef const matrix_reference<const self_type> const_closure_type;#endif typedef matrix_reference<self_type> closure_type; typedef vector<T, typename A::value_type> vector_temporary_type; typedef self_type matrix_temporary_type; typedef dense_tag storage_category; // This could be better for performance, // typedef typename unknown_orientation_tag orientation_category; // but others depend on the orientation information... typedef typename functor_type::orientation_category orientation_category; typedef concrete_tag simd_category; // Construction and destruction BOOST_UBLAS_INLINE vector_of_vector (): matrix_expression<self_type> (), size1_ (0), size2_ (0), data_ (1) {} BOOST_UBLAS_INLINE vector_of_vector (size_type size1, size_type size2): matrix_expression<self_type> (), size1_ (size1), size2_ (size2), data_ (1) { resize (size1, size2, true); } BOOST_UBLAS_INLINE vector_of_vector (const vector_of_vector &m): matrix_expression<self_type> (), size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {} template<class AE> BOOST_UBLAS_INLINE vector_of_vector (const matrix_expression<AE> &ae): matrix_expression<self_type> (), size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (functor_type::size1 (size1_, size2_) + 1) { for (size_type k = 0; k < functor_type::size1 (size1_, size2_); ++ k) data ()[k].resize (functor_type::size2 (size1_, size2_)); matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size1_; } BOOST_UBLAS_INLINE size_type size2 () const { return size2_; } BOOST_UBLAS_INLINE const array_type &data () const { return data_; } BOOST_UBLAS_INLINE array_type &data () { return data_; } // Resizing BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, bool preserve = true) { size1_ = size1; size2_ = size2; if (preserve) data ().resize (functor_type::size1 (size1, size2) + 1, BOOST_UBLAS_TYPENAME array_type::value_type ()); else data ().resize (functor_type::size1 (size1, size2) + 1); for (size_type k = 0; k < functor_type::size1 (size1, size2); ++ k) { if (preserve) data () [k].resize (functor_type::size2 (size1, size2), value_type ()); else data () [k].resize (functor_type::size2 (size1, size2)); } } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { return data () [functor_type::element1 (i, size1_, j, size2_)] [functor_type::element2 (i, size1_, j, size2_)]; } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { return data () [functor_type::element1 (i, size1_, j, size2_)] [functor_type::element2 (i, size1_, j, size2_)]; } // Assignment BOOST_UBLAS_INLINE vector_of_vector &operator = (const vector_of_vector &m) { size1_ = m.size1_; size2_ = m.size2_; data () = m.data (); return *this; } BOOST_UBLAS_INLINE vector_of_vector &assign_temporary (vector_of_vector &m) { swap (m); return *this; } template<class AE> BOOST_UBLAS_INLINE vector_of_vector &operator = (const matrix_expression<AE> &ae) { // return assign (self_type (ae)); self_type temporary (ae); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE vector_of_vector &assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE vector_of_vector& operator += (const matrix_expression<AE> &ae) { // return assign (self_type (*this + ae)); self_type temporary (*this + ae); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE vector_of_vector &plus_assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_plus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE vector_of_vector& operator -= (const matrix_expression<AE> &ae) { // return assign (self_type (*this - ae)); self_type temporary (*this - ae); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE vector_of_vector &minus_assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_minus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); return *this; } template<class AT> BOOST_UBLAS_INLINE vector_of_vector& operator *= (const AT &at) { matrix_assign_scalar (scalar_multiplies_assign<reference, AT> (), *this, at); return *this; } template<class AT> BOOST_UBLAS_INLINE vector_of_vector& operator /= (const AT &at) { matrix_assign_scalar (scalar_divides_assign<reference, AT> (), *this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (vector_of_vector &m) { if (this != &m) { std::swap (size1_, m.size1_); std::swap (size2_, m.size2_); data ().swap (m.data ()); } }#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS BOOST_UBLAS_INLINE friend void swap (vector_of_vector &m1, vector_of_vector &m2) { m1.swap (m2); }#endif // Element insertion and erasure // These functions should work with std::vector. // Thanks to Kresimir Fresl for spotting this. BOOST_UBLAS_INLINE void insert (size_type i, size_type j, const_reference t) { BOOST_UBLAS_CHECK (data () [functor_type::element1 (i, size1_, j, size2_)] [functor_type::element2 (i, size1_, j, size2_)] == value_type (0), bad_index ()); data () [functor_type::element1 (i, size1_, j, size2_)] [functor_type::element2 (i, size1_, j, size2_)] = t; } BOOST_UBLAS_INLINE void erase (size_type i, size_type j) { data () [functor_type::element1 (i, size1_, j, size2_)] [functor_type::element2 (i, size1_, j, size2_)] = value_type (0); } BOOST_UBLAS_INLINE void clear () { for (size_type k = 0; k < functor_type::size1 (size1_, size2_); ++ k) // data () [k].clear (); std::fill (data () [k].begin (), data () [k].end (), value_type (0)); } // Iterator types private: // Use the vector iterator typedef typename A::const_iterator vector_const_iterator_type; typedef typename A::iterator vector_iterator_type; typedef typename A::value_type::const_iterator const_iterator_type; typedef typename A::value_type::iterator iterator_type; public:#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1<self_type, dense_random_access_iterator_tag> iterator1; typedef indexed_iterator2<self_type, dense_random_access_iterator_tag> iterator2; typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1; typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;#else class const_iterator1; class iterator1; class const_iterator2; class iterator2;#endif#ifdef BOOST_MSVC_STD_ITERATOR typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1; typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1; typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2; typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;#else typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1; typedef reverse_iterator_base1<iterator1> reverse_iterator1; typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2; typedef reverse_iterator_base2<iterator2> reverse_iterator2;#endif // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int rank, size_type i, size_type j) const {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator1 (*this, i, j);#else return const_iterator1 (*this, i, j, data () [functor_type::address1 (i, size1_, j, size2_)].begin () + functor_type::address2 (i, size1_, j, size2_));#endif } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator1 (*this, i, j);#else return iterator1 (*this, i, j, data () [functor_type::address1 (i, size1_, j, size2_)].begin () + functor_type::address2 (i, size1_, j, size2_));#endif } BOOST_UBLAS_INLINE const_iterator2 find2 (int rank, size_type i, size_type j) const {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator2 (*this, i, j);#else return const_iterator2 (*this, i, j, data () [functor_type::address1 (i, size1_, j, size2_)].begin () + functor_type::address2 (i, size1_, j, size2_));#endif } BOOST_UBLAS_INLINE iterator2 find2 (int rank, size_type i, size_type j) {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator2 (*this, i, j);#else return iterator2 (*this, i, j, data () [functor_type::address1 (i, size1_, j, size2_)].begin () + functor_type::address2 (i, size1_, j, size2_));#endif }#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference<vector_of_vector>, public random_access_iterator_base<dense_random_access_iterator_tag, const_iterator1, value_type> { public: typedef dense_random_access_iterator_tag iterator_category;#ifdef BOOST_MSVC_STD_ITERATOR typedef const_reference reference;#else typedef typename vector_of_vector::value_type value_type; typedef typename vector_of_vector::difference_type difference_type; typedef typename vector_of_vector::const_reference reference; typedef const typename vector_of_vector::pointer pointer;#endif typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference<self_type> (), i_ (), j_ (), it_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, size_type i, size_type j, const const_iterator_type &it): container_const_reference<self_type> (m), i_ (i), j_ (j), it_ (it) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference<self_type> (it ()), i_ (it.i_), j_ (it.j_), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ i_; const self_type &m = (*this) (); if (functor_type::fast1 ()) ++ it_; else it_ = m.find1 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- i_; const self_type &m = (*this) (); if (functor_type::fast1 ()) -- it_; else it_ = m.find1 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { i_ += n; const self_type &m = (*this) (); it_ = m.find1 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { i_ -= n; const self_type &m = (*this) (); it_ = m.find1 (1, i_, j_).it_; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (index2 () == it.index2 (), bad_index ()); return index1 () - it.index1 (); } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -