📄 matrix.hpp
字号:
//// Copyright (c) 2000-2002// Joerg Walter, Mathias Koch//// Permission to use, copy, modify, distribute and sell this software// and its documentation for any purpose is hereby granted without fee,// provided that the above copyright notice appear in all copies and// that both that copyright notice and this permission notice appear// in supporting documentation. The authors make no representations// about the suitability of this software for any purpose.// It is provided "as is" without express or implied warranty.//// The authors gratefully acknowledge the support of// GeNeSys mbH & Co. KG in producing this work.//#ifndef BOOST_UBLAS_MATRIX_H#define BOOST_UBLAS_MATRIX_H#include <boost/numeric/ublas/config.hpp>#include <boost/numeric/ublas/storage.hpp>#include <boost/numeric/ublas/vector.hpp>#include <boost/numeric/ublas/matrix_expression.hpp>#include <boost/numeric/ublas/matrix_assign.hpp>#include <boost/numeric/ublas/matrix_proxy.hpp>// Iterators based on ideas of Jeremy Sieknamespace boost { namespace numeric { namespace ublas { namespace detail { using namespace boost::numeric::ublas; // Matrix resizing algorithm template <class F, class M> BOOST_UBLAS_INLINE void matrix_resize_preserve (M& m, M& temporary, BOOST_UBLAS_TYPENAME M::size_type size1, BOOST_UBLAS_TYPENAME M::size_type size2) { typedef F functor_type; typedef typename M::size_type size_type; // Common elements to preserve const size_type size1_min = (std::min) (size1, m.size1_); const size_type size2_min = (std::min) (size2, m.size2_); // Order loop for i-major and j-minor sizes const size_type i_size = functor_type::size1 (size1_min, size2_min); const size_type j_size = functor_type::size2 (size1_min, size2_min); for (size_type i = 0; i != i_size; ++i) { // indexing copy over major for (size_type j = 0; j != j_size; ++j) { temporary.data () [functor_type::element (functor_type::element1(i,i_size, j,j_size), size1, functor_type::element2(i,i_size, j,j_size), size2)] = m.data() [functor_type::element (functor_type::element1(i,i_size, j,j_size), m.size1_, functor_type::element2(i,i_size, j,j_size), m.size2_)]; } } assign_temporary (temporary); } } // Array based matrix class template<class T, class F, class A> class matrix: public matrix_expression<matrix<T, F, A> > { public:#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS BOOST_UBLAS_USING matrix_expression<matrix<T, F, A> >::operator ();#endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef A array_type; private: typedef T *pointer; typedef F functor_type; typedef matrix<T, F, A> self_type; public:#ifndef BOOST_UBLAS_CT_REFERENCE_BASE_TYPEDEFS typedef const matrix_const_reference<const self_type> const_closure_type;#else typedef const matrix_reference<const self_type> const_closure_type;#endif typedef matrix_reference<self_type> closure_type; typedef vector<T, A> vector_temporary_type; typedef self_type matrix_temporary_type; typedef dense_tag storage_category; // This could be better for performance, // typedef typename unknown_orientation_tag orientation_category; // but others depend on the orientation information... typedef typename functor_type::orientation_category orientation_category; typedef concrete_tag simd_category; // Construction and destruction BOOST_UBLAS_INLINE matrix (): matrix_expression<self_type> (), size1_ (0), size2_ (0), data_ () {} BOOST_UBLAS_INLINE matrix (size_type size1, size_type size2): matrix_expression<self_type> (), size1_ (size1), size2_ (size2), data_ (functor_type::storage_size (size1, size2)) { } BOOST_UBLAS_INLINE matrix (size_type size1, size_type size2, const array_type &data): matrix_expression<self_type> (), size1_ (size1), size2_ (size2), data_ (data) {} BOOST_UBLAS_INLINE matrix (const matrix &m): matrix_expression<self_type> (), size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {} template<class AE> BOOST_UBLAS_INLINE matrix (const matrix_expression<AE> &ae): matrix_expression<self_type> (), size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (functor_type::storage_size (size1_, size2_)) { matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size1_; } BOOST_UBLAS_INLINE size_type size2 () const { return size2_; } BOOST_UBLAS_INLINE const array_type &data () const { return data_; } BOOST_UBLAS_INLINE array_type &data () { return data_; } // Resizing BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, bool preserve = true) { if (preserve) { self_type temporary (size1, size2); // FIXME use matrix_resize_preserve on conformant compilers // detail::matrix_resize_reserve<functor_type> (*this, temporary, size1, size2); // Common elements to preserve const size_type size1_min = (std::min) (size1, size1_); const size_type size2_min = (std::min) (size2, size2_); // Order loop for i-major and j-minor sizes const size_type i_size = functor_type::size1 (size1_min, size2_min); const size_type j_size = functor_type::size2 (size1_min, size2_min); for (size_type i = 0; i != i_size; ++i) { // indexing copy over major for (size_type j = 0; j != j_size; ++j) { temporary.data () [functor_type::element (functor_type::element1(i,i_size, j,j_size), size1, functor_type::element2(i,i_size, j,j_size), size2)] = data() [functor_type::element (functor_type::element1(i,i_size, j,j_size), size1_, functor_type::element2(i,i_size, j,j_size), size2_)]; } } assign_temporary (temporary); } else { data ().resize (functor_type::storage_size (size1, size2)); size1_ = size1; size2_ = size2; } } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { return data () [functor_type::element (i, size1_, j, size2_)]; } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { return data () [functor_type::element (i, size1_, j, size2_)]; } // Assignment BOOST_UBLAS_INLINE matrix &operator = (const matrix &m) { size1_ = m.size1_; size2_ = m.size2_; data () = m.data (); return *this; }#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION template<class A2, class F2> // Generic matrix assignment without temporary BOOST_UBLAS_INLINE matrix &operator = (const matrix<T, A2, F2> &m) { resize (m.size1 (), m.size2 ()); assign (m); return *this; }#endif BOOST_UBLAS_INLINE matrix &assign_temporary (matrix &m) { swap (m); return *this; } template<class AE> BOOST_UBLAS_INLINE matrix &operator = (const matrix_expression<AE> &ae) { // return assign (self_type (ae)); self_type temporary (ae); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE matrix &assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE matrix& operator += (const matrix_expression<AE> &ae) { // return assign (self_type (*this + ae)); self_type temporary (*this + ae); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE matrix &plus_assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_plus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE matrix& operator -= (const matrix_expression<AE> &ae) { // return assign (self_type (*this - ae)); self_type temporary (*this - ae); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE matrix &minus_assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_minus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); return *this; } template<class AT> BOOST_UBLAS_INLINE matrix& operator *= (const AT &at) { matrix_assign_scalar (scalar_multiplies_assign<reference, AT> (), *this, at); return *this; } template<class AT> BOOST_UBLAS_INLINE matrix& operator /= (const AT &at) { matrix_assign_scalar (scalar_divides_assign<reference, AT> (), *this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (matrix &m) { if (this != &m) { std::swap (size1_, m.size1_); std::swap (size2_, m.size2_); data ().swap (m.data ()); } }#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS BOOST_UBLAS_INLINE friend void swap (matrix &m1, matrix &m2) { m1.swap (m2); }#endif // Element insertion and erasure // These functions should work with std::vector. // Thanks to Kresimir Fresl for spotting this. BOOST_UBLAS_INLINE void insert (size_type i, size_type j, const_reference t) { BOOST_UBLAS_CHECK (data () [functor_type::element (i, size1_, j, size2_)] == value_type (0), bad_index ()); // data ().insert (data ().begin () + functor_type::element (i, size1_, j, size2_), t); data () [functor_type::element (i, size1_, j, size2_)] = t; } BOOST_UBLAS_INLINE void erase (size_type i, size_type j) { // data ().erase (data ().begin () + functor_type::element (i, size1_, j, size2_)); data () [functor_type::element (i, size1_, j, size2_)] = value_type (0); } BOOST_UBLAS_INLINE void clear () { // data ().clear (); std::fill (data ().begin (), data ().end (), value_type (0)); } // Iterator types private: // Use the storage array iterator typedef typename A::const_iterator const_iterator_type; typedef typename A::iterator iterator_type; public:#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1<self_type, dense_random_access_iterator_tag> iterator1; typedef indexed_iterator2<self_type, dense_random_access_iterator_tag> iterator2; typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1; typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;#else class const_iterator1; class iterator1; class const_iterator2; class iterator2;#endif#ifdef BOOST_MSVC_STD_ITERATOR typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1; typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1; typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2; typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;#else typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1; typedef reverse_iterator_base1<iterator1> reverse_iterator1; typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2; typedef reverse_iterator_base2<iterator2> reverse_iterator2;#endif // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int /* rank */, size_type i, size_type j) const {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator1 (*this, i, j);#else return const_iterator1 (*this, data ().begin () + functor_type::address (i, size1_, j, size2_));#endif } BOOST_UBLAS_INLINE iterator1 find1 (int /* rank */, size_type i, size_type j) {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator1 (*this, i, j);#else return iterator1 (*this, data ().begin () + functor_type::address (i, size1_, j, size2_));#endif } BOOST_UBLAS_INLINE const_iterator2 find2 (int /* rank */, size_type i, size_type j) const {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator2 (*this, i, j);#else return const_iterator2 (*this, data ().begin () + functor_type::address (i, size1_, j, size2_));#endif } BOOST_UBLAS_INLINE iterator2 find2 (int /* rank */, size_type i, size_type j) {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -