⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix.hpp

📁 CGAL is a collaborative effort of several sites in Europe and Israel. The goal is to make the most i
💻 HPP
📖 第 1 页 / 共 5 页
字号:
////  Copyright (c) 2000-2002//  Joerg Walter, Mathias Koch////  Permission to use, copy, modify, distribute and sell this software//  and its documentation for any purpose is hereby granted without fee,//  provided that the above copyright notice appear in all copies and//  that both that copyright notice and this permission notice appear//  in supporting documentation.  The authors make no representations//  about the suitability of this software for any purpose.//  It is provided "as is" without express or implied warranty.////  The authors gratefully acknowledge the support of//  GeNeSys mbH & Co. KG in producing this work.//#ifndef BOOST_UBLAS_MATRIX_H#define BOOST_UBLAS_MATRIX_H#include <boost/numeric/ublas/config.hpp>#include <boost/numeric/ublas/storage.hpp>#include <boost/numeric/ublas/vector.hpp>#include <boost/numeric/ublas/matrix_expression.hpp>#include <boost/numeric/ublas/matrix_assign.hpp>#include <boost/numeric/ublas/matrix_proxy.hpp>// Iterators based on ideas of Jeremy Sieknamespace boost { namespace numeric { namespace ublas {    namespace detail {        using namespace boost::numeric::ublas;        // Matrix resizing algorithm        template <class F, class M>        BOOST_UBLAS_INLINE        void matrix_resize_preserve (M& m, M& temporary, BOOST_UBLAS_TYPENAME M::size_type size1, BOOST_UBLAS_TYPENAME M::size_type size2) {            typedef F functor_type;            typedef typename M::size_type size_type;            // Common elements to preserve            const size_type size1_min = (std::min) (size1, m.size1_);            const size_type size2_min = (std::min) (size2, m.size2_);            // Order loop for i-major and j-minor sizes            const size_type i_size = functor_type::size1 (size1_min, size2_min);            const size_type j_size = functor_type::size2 (size1_min, size2_min);            for (size_type i = 0; i != i_size; ++i) {    // indexing copy over major                for (size_type j = 0; j != j_size; ++j) {                    temporary.data () [functor_type::element (functor_type::element1(i,i_size, j,j_size), size1, functor_type::element2(i,i_size, j,j_size), size2)] =                        m.data() [functor_type::element (functor_type::element1(i,i_size, j,j_size), m.size1_, functor_type::element2(i,i_size, j,j_size), m.size2_)];                }            }            assign_temporary (temporary);        }    }    // Array based matrix class    template<class T, class F, class A>    class matrix:        public matrix_expression<matrix<T, F, A> > {    public:#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS        BOOST_UBLAS_USING matrix_expression<matrix<T, F, A> >::operator ();#endif        typedef typename A::size_type size_type;        typedef typename A::difference_type difference_type;        typedef T value_type;        typedef const T &const_reference;        typedef T &reference;        typedef A array_type;    private:        typedef T *pointer;        typedef F functor_type;        typedef matrix<T, F, A> self_type;    public:#ifndef BOOST_UBLAS_CT_REFERENCE_BASE_TYPEDEFS        typedef const matrix_const_reference<const self_type> const_closure_type;#else        typedef const matrix_reference<const self_type> const_closure_type;#endif        typedef matrix_reference<self_type> closure_type;        typedef vector<T, A> vector_temporary_type;        typedef self_type matrix_temporary_type;        typedef dense_tag storage_category;        // This could be better for performance,        // typedef typename unknown_orientation_tag orientation_category;        // but others depend on the orientation information...        typedef typename functor_type::orientation_category orientation_category;        typedef concrete_tag simd_category;        // Construction and destruction        BOOST_UBLAS_INLINE        matrix ():            matrix_expression<self_type> (),            size1_ (0), size2_ (0), data_ () {}        BOOST_UBLAS_INLINE        matrix (size_type size1, size_type size2):            matrix_expression<self_type> (),            size1_ (size1), size2_ (size2), data_ (functor_type::storage_size (size1, size2)) {        }        BOOST_UBLAS_INLINE        matrix (size_type size1, size_type size2, const array_type &data):            matrix_expression<self_type> (),            size1_ (size1), size2_ (size2), data_ (data) {}        BOOST_UBLAS_INLINE        matrix (const matrix &m):            matrix_expression<self_type> (),            size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {}        template<class AE>        BOOST_UBLAS_INLINE        matrix (const matrix_expression<AE> &ae):            matrix_expression<self_type> (),            size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (functor_type::storage_size (size1_, size2_)) {            matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);        }        // Accessors        BOOST_UBLAS_INLINE        size_type size1 () const {            return size1_;        }        BOOST_UBLAS_INLINE        size_type size2 () const {            return size2_;        }        BOOST_UBLAS_INLINE        const array_type &data () const {            return data_;        }        BOOST_UBLAS_INLINE        array_type &data () {            return data_;        }        // Resizing        BOOST_UBLAS_INLINE        void resize (size_type size1, size_type size2, bool preserve = true) {            if (preserve) {                self_type temporary (size1, size2);                // FIXME use matrix_resize_preserve on conformant compilers                // detail::matrix_resize_reserve<functor_type> (*this, temporary, size1, size2);                // Common elements to preserve                const size_type size1_min = (std::min) (size1, size1_);                const size_type size2_min = (std::min) (size2, size2_);                // Order loop for i-major and j-minor sizes                const size_type i_size = functor_type::size1 (size1_min, size2_min);                const size_type j_size = functor_type::size2 (size1_min, size2_min);                for (size_type i = 0; i != i_size; ++i) {    // indexing copy over major                    for (size_type j = 0; j != j_size; ++j) {                        temporary.data () [functor_type::element (functor_type::element1(i,i_size, j,j_size), size1, functor_type::element2(i,i_size, j,j_size), size2)] =                            data() [functor_type::element (functor_type::element1(i,i_size, j,j_size), size1_, functor_type::element2(i,i_size, j,j_size), size2_)];                    }                }                assign_temporary (temporary);            }            else {                data ().resize (functor_type::storage_size (size1, size2));                size1_ = size1;                size2_ = size2;            }        }        // Element access        BOOST_UBLAS_INLINE        const_reference operator () (size_type i, size_type j) const {            return data () [functor_type::element (i, size1_, j, size2_)];        }        BOOST_UBLAS_INLINE        reference operator () (size_type i, size_type j) {            return data () [functor_type::element (i, size1_, j, size2_)];        }        // Assignment        BOOST_UBLAS_INLINE        matrix &operator = (const matrix &m) {            size1_ = m.size1_;            size2_ = m.size2_;            data () = m.data ();            return *this;        }#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION        template<class A2, class F2>          // Generic matrix assignment without temporary        BOOST_UBLAS_INLINE        matrix &operator = (const matrix<T, A2, F2> &m) {            resize (m.size1 (), m.size2 ());            assign (m);            return *this;        }#endif        BOOST_UBLAS_INLINE        matrix &assign_temporary (matrix &m) {            swap (m);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        matrix &operator = (const matrix_expression<AE> &ae) {            // return assign (self_type (ae));            self_type temporary (ae);            return assign_temporary (temporary);        }        template<class AE>        BOOST_UBLAS_INLINE        matrix &assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        matrix& operator += (const matrix_expression<AE> &ae) {            // return assign (self_type (*this + ae));            self_type temporary (*this + ae);            return assign_temporary (temporary);        }        template<class AE>        BOOST_UBLAS_INLINE        matrix &plus_assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_plus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        matrix& operator -= (const matrix_expression<AE> &ae) {            // return assign (self_type (*this - ae));            self_type temporary (*this - ae);            return assign_temporary (temporary);        }        template<class AE>        BOOST_UBLAS_INLINE        matrix &minus_assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_minus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);            return *this;        }        template<class AT>        BOOST_UBLAS_INLINE        matrix& operator *= (const AT &at) {            matrix_assign_scalar (scalar_multiplies_assign<reference, AT> (), *this, at);            return *this;        }        template<class AT>        BOOST_UBLAS_INLINE        matrix& operator /= (const AT &at) {            matrix_assign_scalar (scalar_divides_assign<reference, AT> (), *this, at);            return *this;        }        // Swapping        BOOST_UBLAS_INLINE        void swap (matrix &m) {            if (this != &m) {                std::swap (size1_, m.size1_);                std::swap (size2_, m.size2_);                data ().swap (m.data ());            }        }#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS        BOOST_UBLAS_INLINE        friend void swap (matrix &m1, matrix &m2) {            m1.swap (m2);        }#endif        // Element insertion and erasure        // These functions should work with std::vector.        // Thanks to Kresimir Fresl for spotting this.        BOOST_UBLAS_INLINE        void insert (size_type i, size_type j, const_reference t) {            BOOST_UBLAS_CHECK (data () [functor_type::element (i, size1_, j, size2_)] == value_type (0), bad_index ());            // data ().insert (data ().begin () + functor_type::element (i, size1_, j, size2_), t);            data () [functor_type::element (i, size1_, j, size2_)] = t;        }        BOOST_UBLAS_INLINE        void erase (size_type i, size_type j) {            // data ().erase (data ().begin () + functor_type::element (i, size1_, j, size2_));            data () [functor_type::element (i, size1_, j, size2_)] = value_type (0);        }        BOOST_UBLAS_INLINE        void clear () {            // data ().clear ();            std::fill (data ().begin (), data ().end (), value_type (0));        }        // Iterator types    private:        // Use the storage array iterator        typedef typename A::const_iterator const_iterator_type;        typedef typename A::iterator iterator_type;    public:#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR        typedef indexed_iterator1<self_type, dense_random_access_iterator_tag> iterator1;        typedef indexed_iterator2<self_type, dense_random_access_iterator_tag> iterator2;        typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1;        typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;#else        class const_iterator1;        class iterator1;        class const_iterator2;        class iterator2;#endif#ifdef BOOST_MSVC_STD_ITERATOR        typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1;        typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1;        typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2;        typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;#else        typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;        typedef reverse_iterator_base1<iterator1> reverse_iterator1;        typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;        typedef reverse_iterator_base2<iterator2> reverse_iterator2;#endif        // Element lookup        BOOST_UBLAS_INLINE        const_iterator1 find1 (int /* rank */, size_type i, size_type j) const {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR            return const_iterator1 (*this, i, j);#else            return const_iterator1 (*this, data ().begin () + functor_type::address (i, size1_, j, size2_));#endif        }        BOOST_UBLAS_INLINE        iterator1 find1 (int /* rank */, size_type i, size_type j) {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR            return iterator1 (*this, i, j);#else            return iterator1 (*this, data ().begin () + functor_type::address (i, size1_, j, size2_));#endif        }        BOOST_UBLAS_INLINE        const_iterator2 find2 (int /* rank */, size_type i, size_type j) const {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR            return const_iterator2 (*this, i, j);#else            return const_iterator2 (*this, data ().begin () + functor_type::address (i, size1_, j, size2_));#endif        }        BOOST_UBLAS_INLINE        iterator2 find2 (int /* rank */, size_type i, size_type j) {#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -