⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hermitian.hpp

📁 CGAL is a collaborative effort of several sites in Europe and Israel. The goal is to make the most i
💻 HPP
📖 第 1 页 / 共 5 页
字号:
            //     data () (i, i) = type_traits<value_type>::real (t);            // else            if (functor_type::other (i, j))                data () (i, j) = t;            else                data () (j, i) = type_traits<value_type>::conj (t);        }#else        BOOST_UBLAS_INLINE        reference operator () (size_type i, size_type j) const {            BOOST_UBLAS_CHECK (i < size1 (), bad_index ());            BOOST_UBLAS_CHECK (j < size2 (), bad_index ());#ifndef BOOST_UBLAS_STRICT_HERMITIAN            if (functor_type::other (i, j))                return data () (i, j);            else {                external_logic ().raise ();                return conj_ = type_traits<value_type>::conj (data () (j, i));            }#else            if (functor_type::other (i, j))                return reference (*this, i, j, data () (i, j));            else                return reference (*this, i, j, type_traits<value_type>::conj (data () (j, i)));#endif        }        BOOST_UBLAS_INLINE        void at (size_type i, size_type j, value_type t) const {            BOOST_UBLAS_CHECK (i < size1 (), bad_index ());            BOOST_UBLAS_CHECK (j < size2 (), bad_index ());            // if (i == j)            //     data () (i, i) = type_traits<value_type>::real (t);            // else            if (functor_type::other (i, j))                data () (i, j) = t;            else                data () (j, i) = type_traits<value_type>::conj (t);        }#endif        // Assignment        BOOST_UBLAS_INLINE        hermitian_adaptor &operator = (const hermitian_adaptor &m) {            matrix_assign (scalar_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, value_type> (), functor_type (), *this, m);            return *this;        }        BOOST_UBLAS_INLINE        hermitian_adaptor &assign_temporary (hermitian_adaptor &m) {            *this = m;            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        hermitian_adaptor &operator = (const matrix_expression<AE> &ae) {            matrix_assign (scalar_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, value_type> (), functor_type (), *this, matrix<value_type> (ae));            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        hermitian_adaptor &assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, BOOST_UBLAS_TYPENAME AE::value_type> (), functor_type (), *this, ae);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        hermitian_adaptor& operator += (const matrix_expression<AE> &ae) {            matrix_assign (scalar_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, value_type> (), functor_type (), *this, matrix<value_type> (*this + ae));            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        hermitian_adaptor &plus_assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_plus_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, BOOST_UBLAS_TYPENAME AE::value_type> (), functor_type (), *this, ae);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        hermitian_adaptor& operator -= (const matrix_expression<AE> &ae) {            matrix_assign (scalar_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, value_type> (), functor_type (), *this, matrix<value_type> (*this - ae));            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        hermitian_adaptor &minus_assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_minus_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, BOOST_UBLAS_TYPENAME AE::value_type> (), functor_type (), *this, ae);            return *this;        }        template<class AT>        BOOST_UBLAS_INLINE        hermitian_adaptor& operator *= (const AT &at) {            // Multiplication is only allowed for real scalars,            // otherwise the resulting matrix isn't hermitian.            // Thanks to Peter Schmitteckert for spotting this.            BOOST_UBLAS_CHECK (type_traits<value_type>::imag (at) == 0, non_real ());            matrix_assign_scalar (scalar_multiplies_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, AT> (), *this, at);            return *this;        }        template<class AT>        BOOST_UBLAS_INLINE        hermitian_adaptor& operator /= (const AT &at) {            // Multiplication is only allowed for real scalars,            // otherwise the resulting matrix isn't hermitian.            // Thanks to Peter Schmitteckert for spotting this.            BOOST_UBLAS_CHECK (type_traits<value_type>::imag (at) == 0, non_real ());            matrix_assign_scalar (scalar_divides_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, AT> (), *this, at);            return *this;        }        // Closure comparison        BOOST_UBLAS_INLINE        bool same_closure (const hermitian_adaptor &ha) const {            return (*this).data ().same_closure (ha.data ());        }        // Swapping        BOOST_UBLAS_INLINE        void swap (hermitian_adaptor &m) {            if (this != &m)                matrix_swap (scalar_swap<BOOST_UBLAS_TYPENAME iterator1_type::reference, BOOST_UBLAS_TYPENAME iterator1_type::reference> (), functor_type (), *this, m);        }#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS        BOOST_UBLAS_INLINE        friend void swap (hermitian_adaptor &m1, hermitian_adaptor &m2) {            m1.swap (m2);        }#endif        // Iterator types    private:        // Use matrix iterator#ifndef BOOST_UBLAS_CT_PROXY_BASE_TYPEDEFS        typedef typename M::const_iterator1 const_iterator1_type;        typedef typename M::iterator1 iterator1_type;        typedef typename M::const_iterator2 const_iterator2_type;        typedef typename M::iterator2 iterator2_type;#else        typedef typename M::const_iterator1 const_iterator1_type;        typedef typename boost::mpl::if_<boost::is_const<M>,                                          typename M::const_iterator1,                                          typename M::iterator1>::type iterator1_type;        typedef typename M::const_iterator2 const_iterator2_type;        typedef typename boost::mpl::if_<boost::is_const<M>,                                          typename M::const_iterator2,                                          typename M::iterator2>::type iterator2_type;#endif    public:#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR        typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1;        typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2;        typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1;        typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;#else        class const_iterator1;        class iterator1;        class const_iterator2;        class iterator2;#endif#ifdef BOOST_MSVC_STD_ITERATOR        typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1;        typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1;        typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2;        typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;#else        typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;        typedef reverse_iterator_base1<iterator1> reverse_iterator1;        typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;        typedef reverse_iterator_base2<iterator2> reverse_iterator2;#endif        // Element lookup        BOOST_UBLAS_INLINE        const_iterator1 find1 (int rank, size_type i, size_type j) const {            if (functor_type::other (i, j)) {                if (functor_type::other (size1 (), j)) {                    return const_iterator1 (*this, 0, 0,                                            data ().find1 (rank, i, j), data ().find1 (rank, size1 (), j),                                            data ().find2 (rank, size2 (), size1 ()), data ().find2 (rank, size2 (), size1 ()));                } else {                    return const_iterator1 (*this, 0, 1,                                            data ().find1 (rank, i, j), data ().find1 (rank, j, j),                                            data ().find2 (rank, j, j), data ().find2 (rank, j, size1 ()));                }            } else {                if (functor_type::other (size1 (), j)) {                    return const_iterator1 (*this, 1, 0,                                            data ().find1 (rank, j, j), data ().find1 (rank, size1 (), j),                                            data ().find2 (rank, j, i), data ().find2 (rank, j, j));                } else {                    return const_iterator1 (*this, 1, 1,                                            data ().find1 (rank, size1 (), size2 ()), data ().find1 (rank, size1 (), size2 ()),                                            data ().find2 (rank, j, i), data ().find2 (rank, j, size1 ()));                }            }        }        BOOST_UBLAS_INLINE        iterator1 find1 (int rank, size_type i, size_type j) {            if (rank == 1)                i = functor_type::restrict1 (i, j);            return iterator1 (*this, data ().find1 (rank, i, j));        }        BOOST_UBLAS_INLINE        const_iterator2 find2 (int rank, size_type i, size_type j) const {            if (functor_type::other (i, j)) {                if (functor_type::other (i, size2 ())) {                    return const_iterator2 (*this, 1, 1,                                            data ().find1 (rank, size2 (), size1 ()), data ().find1 (rank, size2 (), size1 ()),                                            data ().find2 (rank, i, j), data ().find2 (rank, i, size2 ()));                } else {                    return const_iterator2 (*this, 1, 0,                                            data ().find1 (rank, i, i), data ().find1 (rank, size2 (), i),                                            data ().find2 (rank, i, j), data ().find2 (rank, i, i));                }            } else {                if (functor_type::other (i, size2 ())) {                    return const_iterator2 (*this, 0, 1,                                            data ().find1 (rank, j, i), data ().find1 (rank, i, i),                                            data ().find2 (rank, i, i), data ().find2 (rank, i, size2 ()));                } else {                    return const_iterator2 (*this, 0, 0,                                            data ().find1 (rank, j, i), data ().find1 (rank, size2 (), i),                                            data ().find2 (rank, size1 (), size2 ()), data ().find2 (rank, size2 (), size2 ()));                }            }        }        BOOST_UBLAS_INLINE        iterator2 find2 (int rank, size_type i, size_type j) {            if (rank == 1)                j = functor_type::restrict2 (i, j);            return iterator2 (*this, data ().find2 (rank, i, j));        }        // Iterators simply are indices.#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR        class const_iterator1:            public container_const_reference<hermitian_adaptor>,            public random_access_iterator_base<dense_random_access_iterator_tag,                                               const_iterator1, value_type> {        public:#ifndef BOOST_MSVC_STD_ITERATOR            typedef typename iterator_restrict_traits<typename const_iterator1_type::iterator_category,                                                      dense_random_access_iterator_tag>::iterator_category iterator_category;            typedef typename const_iterator1_type::value_type value_type;            typedef typename const_iterator1_type::difference_type difference_type;            // FIXME: no better way to not return the address of a temporary?            // typedef typename const_iterator1_type::reference reference;            typedef typename const_iterator1_type::value_type reference;            typedef typename const_iterator1_type::pointer pointer;#else            typedef typename iterator_restrict_traits<typename M::const_iterator1::iterator_category,                                                      dense_random_access_iterator_tag>::iterator_category iterator_category;            // FIXME: no better way to not return the address of a temporary?            // typedef const_reference reference;            typedef value_type reference;#endif            typedef const_iterator2 dual_iterator_type;            typedef const_reverse_iterator2 dual_reverse_iterator_type;            // Construction and destruction            BOOST_UBLAS_INLINE            const_iterator1 ():                container_const_reference<self_type> (),                begin_ (-1), end_ (-1), current_ (-1),                it1_begin_ (), it1_end_ (), it1_ (),                it2_begin_ (), it2_end_ (), it2_ () {}            BOOST_UBLAS_INLINE            const_iterator1 (const self_type &m, int begin, int end,                             const const_iterator1_type &it1_begin, const const_iterator1_type &it1_end,                             const const_iterator2_type &it2_begin, const const_iterator2_type &it2_end):                container_const_reference<self_type> (m),                begin_ (begin), end_ (end), current_ (begin),                it1_begin_ (it1_begin), it1_end_ (it1_end), it1_ (it1_begin_),                it2_begin_ (it2_begin), it2_end_ (it2_end), it2_ (it2_begin_) {                if (current_ == 0 && it1_ == it1_end_)                    current_ = 1;                if (current_ == 1 && it2_ == it2_end_)                    current_ = 0;                if ((current_ == 0 && it1_ == it1_end_) ||                    (current_ == 1 && it2_ == it2_end_))                    current_ = end_;                BOOST_UBLAS_CHECK (current_ == end_ ||                                   (current_ == 0 && it1_ != it1_end_) ||                                   (current_ == 1 && it2_ != it2_end_), internal_logic ());            }            // FIXME cannot compile            //  iterator1 does not have these members!            BOOST_UBLAS_INLINE            const_iterator1 (const iterator1 &it):                container_const_reference<self_type> (it ()),                begin_ (it.begin_), end_ (it.end_), current_ (it.current_),                it1_begin_ (it.it1_begin_), it1_end_ (it.it1_end_), it1_ (it.it1_),                it2_begin_ (it.it2_begin_), it2_end_ (it.it2_end_), it2_ (it.it2_) {                BOOST_UBLAS_CHECK (current_ == end_ ||                                   (current_ == 0 && it1_ != it1_end_) ||                                   (current_ == 1 && it2_ != it2_end_), internal_logic ());            }            // Arithmetic            BOOST_UBLAS_INLINE            const_iterator1 &operator ++ () {                BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());                if (current_ == 0) {                    BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ());                    ++ it1_;                    if (it1_ == it1_end_ && end_ == 1) {                        it2_ = it2_begin_;                        current_ = 1;                    }                } else /* if (current_ == 1) */ {                    BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ());                    ++ it2_;                    if (it2_ == it2_end_ && end_ == 0) {                        it1_ = it1_begin_;                        current_ = 0;                    }                }                return *this;            }            BOOST_UBLAS_INLINE            const_iterator1 &operator -- () {                BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ());                if (current_ == 0) {                    if (it1_ == it1_begin_ && begin_ == 1) {                        it2_ = it2_end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -