📄 hermitian.hpp
字号:
// data () (i, i) = type_traits<value_type>::real (t); // else if (functor_type::other (i, j)) data () (i, j) = t; else data () (j, i) = type_traits<value_type>::conj (t); }#else BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ());#ifndef BOOST_UBLAS_STRICT_HERMITIAN if (functor_type::other (i, j)) return data () (i, j); else { external_logic ().raise (); return conj_ = type_traits<value_type>::conj (data () (j, i)); }#else if (functor_type::other (i, j)) return reference (*this, i, j, data () (i, j)); else return reference (*this, i, j, type_traits<value_type>::conj (data () (j, i)));#endif } BOOST_UBLAS_INLINE void at (size_type i, size_type j, value_type t) const { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); // if (i == j) // data () (i, i) = type_traits<value_type>::real (t); // else if (functor_type::other (i, j)) data () (i, j) = t; else data () (j, i) = type_traits<value_type>::conj (t); }#endif // Assignment BOOST_UBLAS_INLINE hermitian_adaptor &operator = (const hermitian_adaptor &m) { matrix_assign (scalar_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, value_type> (), functor_type (), *this, m); return *this; } BOOST_UBLAS_INLINE hermitian_adaptor &assign_temporary (hermitian_adaptor &m) { *this = m; return *this; } template<class AE> BOOST_UBLAS_INLINE hermitian_adaptor &operator = (const matrix_expression<AE> &ae) { matrix_assign (scalar_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, value_type> (), functor_type (), *this, matrix<value_type> (ae)); return *this; } template<class AE> BOOST_UBLAS_INLINE hermitian_adaptor &assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, BOOST_UBLAS_TYPENAME AE::value_type> (), functor_type (), *this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE hermitian_adaptor& operator += (const matrix_expression<AE> &ae) { matrix_assign (scalar_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, value_type> (), functor_type (), *this, matrix<value_type> (*this + ae)); return *this; } template<class AE> BOOST_UBLAS_INLINE hermitian_adaptor &plus_assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_plus_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, BOOST_UBLAS_TYPENAME AE::value_type> (), functor_type (), *this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE hermitian_adaptor& operator -= (const matrix_expression<AE> &ae) { matrix_assign (scalar_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, value_type> (), functor_type (), *this, matrix<value_type> (*this - ae)); return *this; } template<class AE> BOOST_UBLAS_INLINE hermitian_adaptor &minus_assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_minus_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, BOOST_UBLAS_TYPENAME AE::value_type> (), functor_type (), *this, ae); return *this; } template<class AT> BOOST_UBLAS_INLINE hermitian_adaptor& operator *= (const AT &at) { // Multiplication is only allowed for real scalars, // otherwise the resulting matrix isn't hermitian. // Thanks to Peter Schmitteckert for spotting this. BOOST_UBLAS_CHECK (type_traits<value_type>::imag (at) == 0, non_real ()); matrix_assign_scalar (scalar_multiplies_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, AT> (), *this, at); return *this; } template<class AT> BOOST_UBLAS_INLINE hermitian_adaptor& operator /= (const AT &at) { // Multiplication is only allowed for real scalars, // otherwise the resulting matrix isn't hermitian. // Thanks to Peter Schmitteckert for spotting this. BOOST_UBLAS_CHECK (type_traits<value_type>::imag (at) == 0, non_real ()); matrix_assign_scalar (scalar_divides_assign<BOOST_UBLAS_TYPENAME iterator1_type::reference, AT> (), *this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const hermitian_adaptor &ha) const { return (*this).data ().same_closure (ha.data ()); } // Swapping BOOST_UBLAS_INLINE void swap (hermitian_adaptor &m) { if (this != &m) matrix_swap (scalar_swap<BOOST_UBLAS_TYPENAME iterator1_type::reference, BOOST_UBLAS_TYPENAME iterator1_type::reference> (), functor_type (), *this, m); }#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS BOOST_UBLAS_INLINE friend void swap (hermitian_adaptor &m1, hermitian_adaptor &m2) { m1.swap (m2); }#endif // Iterator types private: // Use matrix iterator#ifndef BOOST_UBLAS_CT_PROXY_BASE_TYPEDEFS typedef typename M::const_iterator1 const_iterator1_type; typedef typename M::iterator1 iterator1_type; typedef typename M::const_iterator2 const_iterator2_type; typedef typename M::iterator2 iterator2_type;#else typedef typename M::const_iterator1 const_iterator1_type; typedef typename boost::mpl::if_<boost::is_const<M>, typename M::const_iterator1, typename M::iterator1>::type iterator1_type; typedef typename M::const_iterator2 const_iterator2_type; typedef typename boost::mpl::if_<boost::is_const<M>, typename M::const_iterator2, typename M::iterator2>::type iterator2_type;#endif public:#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1; typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2; typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1; typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;#else class const_iterator1; class iterator1; class const_iterator2; class iterator2;#endif#ifdef BOOST_MSVC_STD_ITERATOR typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1; typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1; typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2; typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;#else typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1; typedef reverse_iterator_base1<iterator1> reverse_iterator1; typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2; typedef reverse_iterator_base2<iterator2> reverse_iterator2;#endif // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int rank, size_type i, size_type j) const { if (functor_type::other (i, j)) { if (functor_type::other (size1 (), j)) { return const_iterator1 (*this, 0, 0, data ().find1 (rank, i, j), data ().find1 (rank, size1 (), j), data ().find2 (rank, size2 (), size1 ()), data ().find2 (rank, size2 (), size1 ())); } else { return const_iterator1 (*this, 0, 1, data ().find1 (rank, i, j), data ().find1 (rank, j, j), data ().find2 (rank, j, j), data ().find2 (rank, j, size1 ())); } } else { if (functor_type::other (size1 (), j)) { return const_iterator1 (*this, 1, 0, data ().find1 (rank, j, j), data ().find1 (rank, size1 (), j), data ().find2 (rank, j, i), data ().find2 (rank, j, j)); } else { return const_iterator1 (*this, 1, 1, data ().find1 (rank, size1 (), size2 ()), data ().find1 (rank, size1 (), size2 ()), data ().find2 (rank, j, i), data ().find2 (rank, j, size1 ())); } } } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) { if (rank == 1) i = functor_type::restrict1 (i, j); return iterator1 (*this, data ().find1 (rank, i, j)); } BOOST_UBLAS_INLINE const_iterator2 find2 (int rank, size_type i, size_type j) const { if (functor_type::other (i, j)) { if (functor_type::other (i, size2 ())) { return const_iterator2 (*this, 1, 1, data ().find1 (rank, size2 (), size1 ()), data ().find1 (rank, size2 (), size1 ()), data ().find2 (rank, i, j), data ().find2 (rank, i, size2 ())); } else { return const_iterator2 (*this, 1, 0, data ().find1 (rank, i, i), data ().find1 (rank, size2 (), i), data ().find2 (rank, i, j), data ().find2 (rank, i, i)); } } else { if (functor_type::other (i, size2 ())) { return const_iterator2 (*this, 0, 1, data ().find1 (rank, j, i), data ().find1 (rank, i, i), data ().find2 (rank, i, i), data ().find2 (rank, i, size2 ())); } else { return const_iterator2 (*this, 0, 0, data ().find1 (rank, j, i), data ().find1 (rank, size2 (), i), data ().find2 (rank, size1 (), size2 ()), data ().find2 (rank, size2 (), size2 ())); } } } BOOST_UBLAS_INLINE iterator2 find2 (int rank, size_type i, size_type j) { if (rank == 1) j = functor_type::restrict2 (i, j); return iterator2 (*this, data ().find2 (rank, i, j)); } // Iterators simply are indices.#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference<hermitian_adaptor>, public random_access_iterator_base<dense_random_access_iterator_tag, const_iterator1, value_type> { public:#ifndef BOOST_MSVC_STD_ITERATOR typedef typename iterator_restrict_traits<typename const_iterator1_type::iterator_category, dense_random_access_iterator_tag>::iterator_category iterator_category; typedef typename const_iterator1_type::value_type value_type; typedef typename const_iterator1_type::difference_type difference_type; // FIXME: no better way to not return the address of a temporary? // typedef typename const_iterator1_type::reference reference; typedef typename const_iterator1_type::value_type reference; typedef typename const_iterator1_type::pointer pointer;#else typedef typename iterator_restrict_traits<typename M::const_iterator1::iterator_category, dense_random_access_iterator_tag>::iterator_category iterator_category; // FIXME: no better way to not return the address of a temporary? // typedef const_reference reference; typedef value_type reference;#endif typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference<self_type> (), begin_ (-1), end_ (-1), current_ (-1), it1_begin_ (), it1_end_ (), it1_ (), it2_begin_ (), it2_end_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, int begin, int end, const const_iterator1_type &it1_begin, const const_iterator1_type &it1_end, const const_iterator2_type &it2_begin, const const_iterator2_type &it2_end): container_const_reference<self_type> (m), begin_ (begin), end_ (end), current_ (begin), it1_begin_ (it1_begin), it1_end_ (it1_end), it1_ (it1_begin_), it2_begin_ (it2_begin), it2_end_ (it2_end), it2_ (it2_begin_) { if (current_ == 0 && it1_ == it1_end_) current_ = 1; if (current_ == 1 && it2_ == it2_end_) current_ = 0; if ((current_ == 0 && it1_ == it1_end_) || (current_ == 1 && it2_ == it2_end_)) current_ = end_; BOOST_UBLAS_CHECK (current_ == end_ || (current_ == 0 && it1_ != it1_end_) || (current_ == 1 && it2_ != it2_end_), internal_logic ()); } // FIXME cannot compile // iterator1 does not have these members! BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference<self_type> (it ()), begin_ (it.begin_), end_ (it.end_), current_ (it.current_), it1_begin_ (it.it1_begin_), it1_end_ (it.it1_end_), it1_ (it.it1_), it2_begin_ (it.it2_begin_), it2_end_ (it.it2_end_), it2_ (it.it2_) { BOOST_UBLAS_CHECK (current_ == end_ || (current_ == 0 && it1_ != it1_end_) || (current_ == 1 && it2_ != it2_end_), internal_logic ()); } // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ()); ++ it1_; if (it1_ == it1_end_ && end_ == 1) { it2_ = it2_begin_; current_ = 1; } } else /* if (current_ == 1) */ { BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ()); ++ it2_; if (it2_ == it2_end_ && end_ == 0) { it1_ = it1_begin_; current_ = 0; } } return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { if (it1_ == it1_begin_ && begin_ == 1) { it2_ = it2_end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -