📄 triangular.hpp
字号:
//// Copyright (c) 2000-2002// Joerg Walter, Mathias Koch//// Permission to use, copy, modify, distribute and sell this software// and its documentation for any purpose is hereby granted without fee,// provided that the above copyright notice appear in all copies and// that both that copyright notice and this permission notice appear// in supporting documentation. The authors make no representations// about the suitability of this software for any purpose.// It is provided "as is" without express or implied warranty.//// The authors gratefully acknowledge the support of// GeNeSys mbH & Co. KG in producing this work.//#ifndef BOOST_UBLAS_TRIANGULAR_H#define BOOST_UBLAS_TRIANGULAR_H#include <boost/numeric/ublas/config.hpp>#include <boost/numeric/ublas/storage.hpp>#include <boost/numeric/ublas/matrix.hpp>// Iterators based on ideas of Jeremy Sieknamespace boost { namespace numeric { namespace ublas { // Array based triangular matrix class template<class T, class F1, class F2, class A> class triangular_matrix: public matrix_expression<triangular_matrix<T, F1, F2, A> > { public:#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS BOOST_UBLAS_USING matrix_expression<triangular_matrix<T, F1, F2, A> >::operator ();#endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef A array_type; private: typedef T *pointer; typedef F1 functor1_type; typedef F2 functor2_type; typedef triangular_matrix<T, F1, F2, A> self_type; public:#ifndef BOOST_UBLAS_CT_REFERENCE_BASE_TYPEDEFS typedef const matrix_const_reference<const self_type> const_closure_type;#else typedef const matrix_reference<const self_type> const_closure_type;#endif typedef matrix_reference<self_type> closure_type; typedef vector<T, A> vector_temporary_type; typedef matrix<T, F2, A> matrix_temporary_type; // general sub-matrix typedef packed_proxy_tag storage_category; typedef typename F1::packed_category packed_category; typedef typename F2::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE triangular_matrix (): matrix_expression<self_type> (), size1_ (0), size2_ (0), data_ (0) {} BOOST_UBLAS_INLINE triangular_matrix (size_type size1, size_type size2): matrix_expression<self_type> (), size1_ (size1), size2_ (size2), data_ (functor1_type::packed_size (size1, size2)) { } BOOST_UBLAS_INLINE triangular_matrix (size_type size1, size_type size2, const array_type &data): matrix_expression<self_type> (), size1_ (size1), size2_ (size2), data_ (data) {} BOOST_UBLAS_INLINE triangular_matrix (const triangular_matrix &m): matrix_expression<self_type> (), size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {} template<class AE> BOOST_UBLAS_INLINE triangular_matrix (const matrix_expression<AE> &ae): matrix_expression<self_type> (), size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (functor1_type::packed_size (size1_, size2_)) { matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size1_; } BOOST_UBLAS_INLINE size_type size2 () const { return size2_; } BOOST_UBLAS_INLINE const array_type &data () const { return data_; } BOOST_UBLAS_INLINE array_type &data () { return data_; } // Resizing BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, bool preserve = true) { size1_ = size1; size2_ = size2; if (preserve) { self_type temporary (size1_, size2_); // FIXME use matrix_resize_preserve on conformant compilers // detail::matrix_resize_preserve<functor_type> (*this, temporary, size1_, size2_); assign_temporary (temporary); } else data ().resize (functor1_type::packed_size (size1_, size2_)); } BOOST_UBLAS_INLINE void resize_packed_preserve (size_type size1, size_type size2) { size1_ = size1; size2_ = size2; data ().resize (functor1_type::packed_size (size1_, size2_), value_type (0)); } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); if (functor1_type::other (i, j)) return data () [functor1_type::element (functor2_type (), i, size1_, j, size2_)]; else if (functor1_type::one (i, j)) return one_; else return zero_; } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); if (functor1_type::other (i, j)) return data () [functor1_type::element (functor2_type (), i, size1_, j, size2_)]; else if (functor1_type::one (i, j)) {#ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER bad_index ().raise ();#endif return const_cast<reference>(one_); } else {#ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER bad_index ().raise ();#endif return const_cast<reference>(zero_); } } // Assignment BOOST_UBLAS_INLINE triangular_matrix &operator = (const triangular_matrix &m) { size1_ = m.size1_; size2_ = m.size2_; data () = m.data (); return *this; } BOOST_UBLAS_INLINE triangular_matrix &assign_temporary (triangular_matrix &m) { swap (m); return *this; } template<class AE> BOOST_UBLAS_INLINE triangular_matrix &operator = (const matrix_expression<AE> &ae) { // return assign (self_type (ae)); self_type temporary (ae); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE triangular_matrix &assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE triangular_matrix& operator += (const matrix_expression<AE> &ae) { // return assign (self_type (*this + ae)); self_type temporary (*this + ae); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE triangular_matrix &plus_assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_plus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE triangular_matrix& operator -= (const matrix_expression<AE> &ae) { // return assign (self_type (*this - ae)); self_type temporary (*this - ae); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE triangular_matrix &minus_assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_minus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); return *this; } template<class AT> BOOST_UBLAS_INLINE triangular_matrix& operator *= (const AT &at) { matrix_assign_scalar (scalar_multiplies_assign<reference, AT> (), *this, at); return *this; } template<class AT> BOOST_UBLAS_INLINE triangular_matrix& operator /= (const AT &at) { matrix_assign_scalar (scalar_divides_assign<reference, AT> (), *this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (triangular_matrix &m) { if (this != &m) { // BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ()); std::swap (size1_, m.size1_); std::swap (size2_, m.size2_); data ().swap (m.data ()); } }#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS BOOST_UBLAS_INLINE friend void swap (triangular_matrix &m1, triangular_matrix &m2) { m1.swap (m2); }#endif // Element insertion and erasure // These functions should work with std::vector. // Thanks to Kresimir Fresl for spotting this. BOOST_UBLAS_INLINE void insert (size_type i, size_type j, const_reference t) { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); if (functor1_type::other (i, j)) { size_type k = functor1_type::element (functor2_type (), i, size1_, j, size2_); BOOST_UBLAS_CHECK (type_traits<value_type>::equals (data () [k], value_type (0)), bad_index ()); // data ().insert (data ().begin () + k, t); data () [k] = t; } else { external_logic ().raise (); } } BOOST_UBLAS_INLINE void erase (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1_, bad_index ()); BOOST_UBLAS_CHECK (j < size2_, bad_index ()); if (functor1_type::other (i, j)) { size_type k = functor1_type::element (functor2_type (), i, size1_, j, size2_); // data ().erase (data ().begin () + k); data () [k] = value_type (0); } } BOOST_UBLAS_INLINE void clear () { // data ().clear (); std::fill (data ().begin (), data ().end (), value_type (0)); } // Iterator types#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1; typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2; typedef indexed_const_iterator1<self_type, packed_random_access_iterator_tag> const_iterator1; typedef indexed_const_iterator2<self_type, packed_random_access_iterator_tag> const_iterator2;#else class const_iterator1; class iterator1; class const_iterator2; class iterator2;#endif#ifdef BOOST_MSVC_STD_ITERATOR typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1; typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1; typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2; typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;#else typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1; typedef reverse_iterator_base1<iterator1> reverse_iterator1; typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2; typedef reverse_iterator_base2<iterator2> reverse_iterator2;#endif // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int rank, size_type i, size_type j) const { if (rank == 1) i = functor1_type::restrict1 (i, j); return const_iterator1 (*this, i, j); } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) { if (rank == 1) i = functor1_type::mutable_restrict1 (i, j); return iterator1 (*this, i, j); } BOOST_UBLAS_INLINE const_iterator2 find2 (int rank, size_type i, size_type j) const { if (rank == 1) j = functor1_type::restrict2 (i, j); return const_iterator2 (*this, i, j); } BOOST_UBLAS_INLINE iterator2 find2 (int rank, size_type i, size_type j) { if (rank == 1) j = functor1_type::mutable_restrict2 (i, j); return iterator2 (*this, i, j); } // Iterators simply are indices.#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference<triangular_matrix>, public random_access_iterator_base<packed_random_access_iterator_tag, const_iterator1, value_type> { public: typedef packed_random_access_iterator_tag iterator_category;#ifdef BOOST_MSVC_STD_ITERATOR typedef const_reference reference;#else typedef typename triangular_matrix::value_type value_type; typedef typename triangular_matrix::difference_type difference_type; typedef typename triangular_matrix::const_reference reference; typedef const typename triangular_matrix::pointer pointer;#endif typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference<self_type> (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, size_type it1, size_type it2): container_const_reference<self_type> (m), it1_ (it1), it2_ (it2) {}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -