⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 triangular.hpp

📁 CGAL is a collaborative effort of several sites in Europe and Israel. The goal is to make the most i
💻 HPP
📖 第 1 页 / 共 5 页
字号:
////  Copyright (c) 2000-2002//  Joerg Walter, Mathias Koch////  Permission to use, copy, modify, distribute and sell this software//  and its documentation for any purpose is hereby granted without fee,//  provided that the above copyright notice appear in all copies and//  that both that copyright notice and this permission notice appear//  in supporting documentation.  The authors make no representations//  about the suitability of this software for any purpose.//  It is provided "as is" without express or implied warranty.////  The authors gratefully acknowledge the support of//  GeNeSys mbH & Co. KG in producing this work.//#ifndef BOOST_UBLAS_TRIANGULAR_H#define BOOST_UBLAS_TRIANGULAR_H#include <boost/numeric/ublas/config.hpp>#include <boost/numeric/ublas/storage.hpp>#include <boost/numeric/ublas/matrix.hpp>// Iterators based on ideas of Jeremy Sieknamespace boost { namespace numeric { namespace ublas {    // Array based triangular matrix class    template<class T, class F1, class F2, class A>    class triangular_matrix:        public matrix_expression<triangular_matrix<T, F1, F2, A> > {    public:#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS        BOOST_UBLAS_USING matrix_expression<triangular_matrix<T, F1, F2, A> >::operator ();#endif        typedef typename A::size_type size_type;        typedef typename A::difference_type difference_type;        typedef T value_type;        typedef const T &const_reference;        typedef T &reference;        typedef A array_type;    private:        typedef T *pointer;        typedef F1 functor1_type;        typedef F2 functor2_type;        typedef triangular_matrix<T, F1, F2, A> self_type;    public:#ifndef BOOST_UBLAS_CT_REFERENCE_BASE_TYPEDEFS        typedef const matrix_const_reference<const self_type> const_closure_type;#else        typedef const matrix_reference<const self_type> const_closure_type;#endif        typedef matrix_reference<self_type> closure_type;        typedef vector<T, A> vector_temporary_type;        typedef matrix<T, F2, A> matrix_temporary_type;  // general sub-matrix        typedef packed_proxy_tag storage_category;        typedef typename F1::packed_category packed_category;        typedef typename F2::orientation_category orientation_category;        // Construction and destruction        BOOST_UBLAS_INLINE        triangular_matrix ():            matrix_expression<self_type> (),            size1_ (0), size2_ (0), data_ (0) {}        BOOST_UBLAS_INLINE        triangular_matrix (size_type size1, size_type size2):            matrix_expression<self_type> (),            size1_ (size1), size2_ (size2), data_ (functor1_type::packed_size (size1, size2)) {        }        BOOST_UBLAS_INLINE        triangular_matrix (size_type size1, size_type size2, const array_type &data):            matrix_expression<self_type> (),            size1_ (size1), size2_ (size2), data_ (data) {}        BOOST_UBLAS_INLINE        triangular_matrix (const triangular_matrix &m):            matrix_expression<self_type> (),            size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {}        template<class AE>        BOOST_UBLAS_INLINE        triangular_matrix (const matrix_expression<AE> &ae):            matrix_expression<self_type> (),            size1_ (ae ().size1 ()), size2_ (ae ().size2 ()),            data_ (functor1_type::packed_size (size1_, size2_)) {            matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);        }        // Accessors        BOOST_UBLAS_INLINE        size_type size1 () const {            return size1_;        }        BOOST_UBLAS_INLINE        size_type size2 () const {            return size2_;        }        BOOST_UBLAS_INLINE        const array_type &data () const {            return data_;        }        BOOST_UBLAS_INLINE        array_type &data () {            return data_;        }        // Resizing        BOOST_UBLAS_INLINE        void resize (size_type size1, size_type size2, bool preserve = true) {            size1_ = size1;            size2_ = size2;            if (preserve) {                self_type temporary (size1_, size2_);                // FIXME use matrix_resize_preserve on conformant compilers                // detail::matrix_resize_preserve<functor_type> (*this, temporary, size1_, size2_);                assign_temporary (temporary);            }            else                data ().resize (functor1_type::packed_size (size1_, size2_));        }        BOOST_UBLAS_INLINE        void resize_packed_preserve (size_type size1, size_type size2) {            size1_ = size1;            size2_ = size2;            data ().resize (functor1_type::packed_size (size1_, size2_), value_type (0));        }        // Element access        BOOST_UBLAS_INLINE        const_reference operator () (size_type i, size_type j) const {            BOOST_UBLAS_CHECK (i < size1_, bad_index ());            BOOST_UBLAS_CHECK (j < size2_, bad_index ());            if (functor1_type::other (i, j))                return data () [functor1_type::element (functor2_type (), i, size1_, j, size2_)];            else if (functor1_type::one (i, j))                return one_;            else                return zero_;        }        BOOST_UBLAS_INLINE        reference operator () (size_type i, size_type j) {            BOOST_UBLAS_CHECK (i < size1_, bad_index ());            BOOST_UBLAS_CHECK (j < size2_, bad_index ());            if (functor1_type::other (i, j))                return data () [functor1_type::element (functor2_type (), i, size1_, j, size2_)];            else if (functor1_type::one (i, j)) {#ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER                bad_index ().raise ();#endif                return const_cast<reference>(one_);            } else {#ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER                bad_index ().raise ();#endif                return const_cast<reference>(zero_);            }        }        // Assignment        BOOST_UBLAS_INLINE        triangular_matrix &operator = (const triangular_matrix &m) {            size1_ = m.size1_;            size2_ = m.size2_;            data () = m.data ();            return *this;        }        BOOST_UBLAS_INLINE        triangular_matrix &assign_temporary (triangular_matrix &m) {            swap (m);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        triangular_matrix &operator = (const matrix_expression<AE> &ae) {            // return assign (self_type (ae));            self_type temporary (ae);            return assign_temporary (temporary);        }        template<class AE>        BOOST_UBLAS_INLINE        triangular_matrix &assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        triangular_matrix& operator += (const matrix_expression<AE> &ae) {            // return assign (self_type (*this + ae));            self_type temporary (*this + ae);            return assign_temporary (temporary);        }        template<class AE>        BOOST_UBLAS_INLINE        triangular_matrix &plus_assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_plus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        triangular_matrix& operator -= (const matrix_expression<AE> &ae) {            // return assign (self_type (*this - ae));            self_type temporary (*this - ae);            return assign_temporary (temporary);        }        template<class AE>        BOOST_UBLAS_INLINE        triangular_matrix &minus_assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_minus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);            return *this;        }        template<class AT>        BOOST_UBLAS_INLINE        triangular_matrix& operator *= (const AT &at) {            matrix_assign_scalar (scalar_multiplies_assign<reference, AT> (), *this, at);            return *this;        }        template<class AT>        BOOST_UBLAS_INLINE        triangular_matrix& operator /= (const AT &at) {            matrix_assign_scalar (scalar_divides_assign<reference, AT> (), *this, at);            return *this;        }        // Swapping        BOOST_UBLAS_INLINE        void swap (triangular_matrix &m) {            if (this != &m) {                // BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ());                std::swap (size1_, m.size1_);                std::swap (size2_, m.size2_);                data ().swap (m.data ());            }        }#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS        BOOST_UBLAS_INLINE        friend void swap (triangular_matrix &m1, triangular_matrix &m2) {            m1.swap (m2);        }#endif        // Element insertion and erasure        // These functions should work with std::vector.        // Thanks to Kresimir Fresl for spotting this.        BOOST_UBLAS_INLINE        void insert (size_type i, size_type j, const_reference t) {            BOOST_UBLAS_CHECK (i < size1_, bad_index ());            BOOST_UBLAS_CHECK (j < size2_, bad_index ());            if (functor1_type::other (i, j)) {                size_type k = functor1_type::element (functor2_type (), i, size1_, j, size2_);                BOOST_UBLAS_CHECK (type_traits<value_type>::equals (data () [k], value_type (0)), bad_index ());                // data ().insert (data ().begin () + k, t);                data () [k] = t;            } else {                external_logic ().raise ();            }        }        BOOST_UBLAS_INLINE        void erase (size_type i, size_type j) {            BOOST_UBLAS_CHECK (i < size1_, bad_index ());            BOOST_UBLAS_CHECK (j < size2_, bad_index ());            if (functor1_type::other (i, j)) {                size_type k = functor1_type::element (functor2_type (), i, size1_, j, size2_);                // data ().erase (data ().begin () + k);                data () [k] = value_type (0);            }        }        BOOST_UBLAS_INLINE        void clear () {            // data ().clear ();            std::fill (data ().begin (), data ().end (), value_type (0));        }        // Iterator types#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR        typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1;        typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2;        typedef indexed_const_iterator1<self_type, packed_random_access_iterator_tag> const_iterator1;        typedef indexed_const_iterator2<self_type, packed_random_access_iterator_tag> const_iterator2;#else        class const_iterator1;        class iterator1;        class const_iterator2;        class iterator2;#endif#ifdef BOOST_MSVC_STD_ITERATOR        typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1;        typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1;        typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2;        typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;#else        typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;        typedef reverse_iterator_base1<iterator1> reverse_iterator1;        typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;        typedef reverse_iterator_base2<iterator2> reverse_iterator2;#endif        // Element lookup        BOOST_UBLAS_INLINE        const_iterator1 find1 (int rank, size_type i, size_type j) const {            if (rank == 1)                i = functor1_type::restrict1 (i, j);            return const_iterator1 (*this, i, j);        }        BOOST_UBLAS_INLINE        iterator1 find1 (int rank, size_type i, size_type j) {            if (rank == 1)                i = functor1_type::mutable_restrict1 (i, j);            return iterator1 (*this, i, j);        }        BOOST_UBLAS_INLINE        const_iterator2 find2 (int rank, size_type i, size_type j) const {            if (rank == 1)                j = functor1_type::restrict2 (i, j);            return const_iterator2 (*this, i, j);        }        BOOST_UBLAS_INLINE        iterator2 find2 (int rank, size_type i, size_type j) {            if (rank == 1)                j = functor1_type::mutable_restrict2 (i, j);            return iterator2 (*this, i, j);        }        // Iterators simply are indices.#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR        class const_iterator1:            public container_const_reference<triangular_matrix>,            public random_access_iterator_base<packed_random_access_iterator_tag,                                               const_iterator1, value_type> {        public:            typedef packed_random_access_iterator_tag iterator_category;#ifdef BOOST_MSVC_STD_ITERATOR            typedef const_reference reference;#else            typedef typename triangular_matrix::value_type value_type;            typedef typename triangular_matrix::difference_type difference_type;            typedef typename triangular_matrix::const_reference reference;            typedef const typename triangular_matrix::pointer pointer;#endif            typedef const_iterator2 dual_iterator_type;            typedef const_reverse_iterator2 dual_reverse_iterator_type;            // Construction and destruction            BOOST_UBLAS_INLINE            const_iterator1 ():                container_const_reference<self_type> (), it1_ (), it2_ () {}            BOOST_UBLAS_INLINE            const_iterator1 (const self_type &m, size_type it1, size_type it2):                container_const_reference<self_type> (m), it1_ (it1), it2_ (it2) {}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -