⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 operation_sparse.hpp

📁 CGAL is a collaborative effort of several sites in Europe and Israel. The goal is to make the most i
💻 HPP
字号:
////  Copyright (c) 2000-2002//  Joerg Walter, Mathias Koch////  Permission to use, copy, modify, distribute and sell this software//  and its documentation for any purpose is hereby granted without fee,//  provided that the above copyright notice appear in all copies and//  that both that copyright notice and this permission notice appear//  in supporting documentation.  The authors make no representations//  about the suitability of this software for any purpose.//  It is provided "as is" without express or implied warranty.////  The authors gratefully acknowledge the support of//  GeNeSys mbH & Co. KG in producing this work.//#ifndef BOOST_UBLAS_OPERATION_SPARSE_H#define BOOST_UBLAS_OPERATION_SPARSE_H// These scaled additions were borrowed from MTL unashamedly.// But Alexei Novakov had a lot of ideas to improve these. Thanks.namespace boost { namespace numeric { namespace ublas {    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M &    sparse_prod (const matrix_expression<E1> &e1,                 const matrix_expression<E2> &e2,                 M &m, const F &f,                 row_major_tag) {        typedef M matrix_type;        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename M::size_type size_type;        typedef typename M::value_type value_type;        vector<value_type> temporary (e2 ().size2 ());#if BOOST_UBLAS_TYPE_CHECK        matrix<value_type, row_major> cm (m.size1 (), m.size2 ());        typedef typename type_traits<value_type>::real_type real_type;        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));        indexing_matrix_assign (scalar_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());#endif        typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());        typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());        while (it1 != it1_end) {            size_type jb (temporary.size ());            size_type je (0);#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION            typename expression1_type::const_iterator2 it2 (it1.begin ());            typename expression1_type::const_iterator2 it2_end (it1.end ());#else            typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));            typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));#endif            while (it2 != it2_end) {                // temporary.plus_assign (*it2 * row (e2 (), it2.index2 ()));                matrix_row<expression2_type> mr (e2 (), it2.index2 ());                typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());                typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());                while (itr != itr_end) {                    size_type j (itr.index ());                    temporary (j) += *it2 * *itr;                    jb = (std::min) (jb, j);                    je = (std::max) (je, j);                    ++ itr;                }                ++ it2;            }            for (size_type j = jb; j < je + 1; ++ j) {                if (temporary (j) != value_type (0)) {                    // FIXME: we'll need to extend the container interface!                    // m.push_back (it1.index1 (), j, temporary (j));                    // FIXME: What to do with adaptors?                    // m.insert (it1.index1 (), j, temporary (j));                    if (f.other (it1.index1 (), j))                        m (it1.index1 (), j) = temporary (j);                    temporary (j) = value_type (0);                }            }            ++ it1;        }#if BOOST_UBLAS_TYPE_CHECK        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());#endif        return m;    }    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M &    sparse_prod (const matrix_expression<E1> &e1,                 const matrix_expression<E2> &e2,                 M &m, const F &f,                 column_major_tag) {        typedef M matrix_type;        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename M::size_type size_type;        typedef typename M::value_type value_type;        vector<value_type> temporary (e1 ().size1 ());#if BOOST_UBLAS_TYPE_CHECK        matrix<value_type, column_major> cm (m.size1 (), m.size2 ());        typedef typename type_traits<value_type>::real_type real_type;        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));        indexing_matrix_assign (scalar_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());#endif        typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());        typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());        while (it2 != it2_end) {            size_type ib (temporary.size ());            size_type ie (0);#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION            typename expression2_type::const_iterator1 it1 (it2.begin ());            typename expression2_type::const_iterator1 it1_end (it2.end ());#else            typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));            typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));#endif            while (it1 != it1_end) {                // column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));                matrix_column<expression1_type> mc (e1 (), it1.index1 ());                typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());                typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());                while (itc != itc_end) {                    size_type i (itc.index ());                    temporary (i) += *it1 * *itc;                    ib = (std::min) (ib, i);                    ie = (std::max) (ie, i);                    ++ itc;                }                ++ it1;            }            for (size_type i = ib; i < ie + 1; ++ i) {                if (temporary (i) != value_type (0)) {                    // FIXME: we'll need to extend the container interface!                    // m.push_back (i, it2.index2 (), temporary (i));                    // FIXME: What to do with adaptors?                    // m.insert (i, it2.index2 (), temporary (i));                    if (f.other (i, it2.index2 ()))                        m (i, it2.index2 ()) = temporary (i);                    temporary (i) = value_type (0);                }            }            ++ it2;        }#if BOOST_UBLAS_TYPE_CHECK        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());#endif        return m;    }    // Dispatcher    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M &    sparse_prod (const matrix_expression<E1> &e1,                 const matrix_expression<E2> &e2,                 M &m, const F &f, bool init = true) {        typedef typename M::value_type value_type;        typedef typename M::orientation_category orientation_category;        if (init)            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));        return sparse_prod (e1, e2, m, f, orientation_category ());    }    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M    sparse_prod (const matrix_expression<E1> &e1,                 const matrix_expression<E2> &e2,                 const F &f) {        typedef M matrix_type;        matrix_type m (e1 ().size1 (), e2 ().size2 ());        // FIXME: needed for c_matrix?!        // return sparse_prod (e1, e2, m, f, false);        return sparse_prod (e1, e2, m, f, true);    }    template<class M, class E1, class E2>    BOOST_UBLAS_INLINE    M &    sparse_prod (const matrix_expression<E1> &e1,                 const matrix_expression<E2> &e2,                 M &m, bool init = true) {        typedef typename M::value_type value_type;        typedef typename M::orientation_category orientation_category;        if (init)            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));        return sparse_prod (e1, e2, m, full (), orientation_category ());    }    template<class M, class E1, class E2>    BOOST_UBLAS_INLINE    M    sparse_prod (const matrix_expression<E1> &e1,                 const matrix_expression<E2> &e2) {        typedef M matrix_type;        matrix_type m (e1 ().size1 (), e2 ().size2 ());        // FIXME: needed for c_matrix?!        // return sparse_prod (e1, e2, m, full (), false);        return sparse_prod (e1, e2, m, full (), true);    }}}}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -