⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 symmetric.hpp

📁 CGAL is a collaborative effort of several sites in Europe and Israel. The goal is to make the most i
💻 HPP
📖 第 1 页 / 共 5 页
字号:
////  Copyright (c) 2000-2002//  Joerg Walter, Mathias Koch////  Permission to use, copy, modify, distribute and sell this software//  and its documentation for any purpose is hereby granted without fee,//  provided that the above copyright notice appear in all copies and//  that both that copyright notice and this permission notice appear//  in supporting documentation.  The authors make no representations//  about the suitability of this software for any purpose.//  It is provided "as is" without express or implied warranty.////  The authors gratefully acknowledge the support of//  GeNeSys mbH & Co. KG in producing this work.//#ifndef BOOST_UBLAS_SYMMETRIC_H#define BOOST_UBLAS_SYMMETRIC_H#include <boost/numeric/ublas/config.hpp>#include <boost/numeric/ublas/storage.hpp>#include <boost/numeric/ublas/matrix.hpp>// Iterators based on ideas of Jeremy Siek// Symmetric matrices are square. Thanks to Peter Schmitteckert for spotting this.namespace boost { namespace numeric { namespace ublas {    template<class M>    bool is_symmetric (const M &m) {        typedef typename M::size_type size_type;        if (m.size1 () != m.size2 ())            return false;        size_type size = BOOST_UBLAS_SAME (m.size1 (), m.size2 ());        for (size_type i = 0; i < size; ++ i) {            for (size_type j = i; j < size; ++ j) {                if (m (i, j) != m (j, i))                    return false;            }        }        return true;    }    // Array based symmetric matrix class    template<class T, class F1, class F2, class A>    class symmetric_matrix:        public matrix_expression<symmetric_matrix<T, F1, F2, A> > {    public:#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS        BOOST_UBLAS_USING matrix_expression<symmetric_matrix<T, F1, F2, A> >::operator ();#endif        typedef typename A::size_type size_type;        typedef typename A::difference_type difference_type;        typedef T value_type;        typedef const T &const_reference;        typedef T &reference;        typedef A array_type;    private:        typedef T *pointer;        typedef F1 functor1_type;        typedef F2 functor2_type;        typedef symmetric_matrix<T, F1, F2, A> self_type;    public:#ifndef BOOST_UBLAS_CT_REFERENCE_BASE_TYPEDEFS        typedef const matrix_const_reference<const self_type> const_closure_type;#else        typedef const matrix_reference<const self_type> const_closure_type;#endif        typedef matrix_reference<self_type> closure_type;        typedef vector<T, A> vector_temporary_type;        typedef matrix<T, F2, A> matrix_temporary_type;  // general sub-matrix        typedef packed_tag storage_category;        typedef typename F1::packed_category packed_category;        typedef typename F2::orientation_category orientation_category;        // Construction and destruction        BOOST_UBLAS_INLINE        symmetric_matrix ():            matrix_expression<self_type> (),            size_ (0), data_ (0) {}        BOOST_UBLAS_INLINE        symmetric_matrix (size_type size):            matrix_expression<self_type> (),            size_ (BOOST_UBLAS_SAME (size, size)), data_ (functor1_type::packed_size (size, size)) {        }        BOOST_UBLAS_INLINE        symmetric_matrix (size_type size1, size_type size2):            matrix_expression<self_type> (),            size_ (BOOST_UBLAS_SAME (size1, size2)), data_ (functor1_type::packed_size (size1, size2)) {        }        BOOST_UBLAS_INLINE        symmetric_matrix (size_type size, const array_type &data):            matrix_expression<self_type> (),            size_ (size), data_ (data) {}        BOOST_UBLAS_INLINE        symmetric_matrix (const symmetric_matrix &m):            matrix_expression<self_type> (),            size_ (m.size_), data_ (m.data_) {}        template<class AE>        BOOST_UBLAS_INLINE        symmetric_matrix (const matrix_expression<AE> &ae):            matrix_expression<self_type> (),            size_ (BOOST_UBLAS_SAME (ae ().size1 (), ae ().size2 ())),            data_ (functor1_type::packed_size (size_, size_)) {            matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);        }        // Accessors        BOOST_UBLAS_INLINE        size_type size1 () const {            return size_;        }        BOOST_UBLAS_INLINE        size_type size2 () const {            return size_;        }        BOOST_UBLAS_INLINE        const array_type &data () const {            return data_;        }        BOOST_UBLAS_INLINE        array_type &data () {            return data_;        }        // Resizing        BOOST_UBLAS_INLINE        void resize (size_type size, bool preserve = true) {            size_ = size;            if (preserve) {                self_type temporary (size_, size_);                // FIXME use matrix_resize_preserve on conformant compilers                // detail::matrix_resize_reserve<functor_type> (*this, temporary, size_, size_);                assign_temporary (temporary);            }            else                data ().resize (functor1_type::packed_size (size_, size_));        }        BOOST_UBLAS_INLINE        void resize (size_type size1, size_type size2, bool preserve = true) {            resize (BOOST_UBLAS_SAME (size1, size2), preserve);        }        BOOST_UBLAS_INLINE        void resize_packed_preserve (size_type size) {            size_ = BOOST_UBLAS_SAME (size, size);            data ().resize (functor1_type::packed_size (size_, size_), value_type (0));        }        // Element access        BOOST_UBLAS_INLINE        const_reference operator () (size_type i, size_type j) const {            BOOST_UBLAS_CHECK (i < size_, bad_index ());            BOOST_UBLAS_CHECK (j < size_, bad_index ());            if (functor1_type::other (i, j))                return data () [functor1_type::element (functor2_type (), i, size_, j, size_)];            else                return data () [functor1_type::element (functor2_type (), j, size_, i, size_)];        }        BOOST_UBLAS_INLINE        reference operator () (size_type i, size_type j) {            BOOST_UBLAS_CHECK (i < size_, bad_index ());            BOOST_UBLAS_CHECK (j < size_, bad_index ());            if (functor1_type::other (i, j))                return data () [functor1_type::element (functor2_type (), i, size_, j, size_)];            else                return data () [functor1_type::element (functor2_type (), j, size_, i, size_)];        }        // Assignment        BOOST_UBLAS_INLINE        symmetric_matrix &operator = (const symmetric_matrix &m) {            size_ = m.size_;            data () = m.data ();            return *this;        }        BOOST_UBLAS_INLINE        symmetric_matrix &assign_temporary (symmetric_matrix &m) {            swap (m);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        symmetric_matrix &operator = (const matrix_expression<AE> &ae) {            // return assign (self_type (ae));            self_type temporary (ae);            return assign_temporary (temporary);        }        template<class AE>        BOOST_UBLAS_INLINE        symmetric_matrix &assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        symmetric_matrix& operator += (const matrix_expression<AE> &ae) {            // return assign (self_type (*this + ae));            self_type temporary (*this + ae);            return assign_temporary (temporary);        }        template<class AE>        BOOST_UBLAS_INLINE        symmetric_matrix &plus_assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_plus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        symmetric_matrix& operator -= (const matrix_expression<AE> &ae) {            // return assign (self_type (*this - ae));            self_type temporary (*this - ae);            return assign_temporary (temporary);        }        template<class AE>        BOOST_UBLAS_INLINE        symmetric_matrix &minus_assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_minus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);            return *this;        }        template<class AT>        BOOST_UBLAS_INLINE        symmetric_matrix& operator *= (const AT &at) {            matrix_assign_scalar (scalar_multiplies_assign<reference, AT> (), *this, at);            return *this;        }        template<class AT>        BOOST_UBLAS_INLINE        symmetric_matrix& operator /= (const AT &at) {            matrix_assign_scalar (scalar_divides_assign<reference, AT> (), *this, at);            return *this;        }        // Swapping        BOOST_UBLAS_INLINE        void swap (symmetric_matrix &m) {            if (this != &m) {                std::swap (size_, m.size_);                data ().swap (m.data ());            }        }#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS        BOOST_UBLAS_INLINE        friend void swap (symmetric_matrix &m1, symmetric_matrix &m2) {            m1.swap (m2);        }#endif        // Element insertion and erasure        // These functions should work with std::vector.        // Thanks to Kresimir Fresl for spotting this.        BOOST_UBLAS_INLINE        void insert (size_type i, size_type j, const_reference t) {            BOOST_UBLAS_CHECK (i < size_, bad_index ());            BOOST_UBLAS_CHECK (j < size_, bad_index ());            if (functor1_type::other (i, j)) {                size_type k = functor1_type::element (functor2_type (), i, size_, j, size_);                BOOST_UBLAS_CHECK (type_traits<value_type>::equals (data () [k], value_type (0)) ||                                   type_traits<value_type>::equals (data () [k], t), bad_index ());                // data ().insert (data ().begin () + k, t);                data () [k] = t;            } else {                size_type k = functor1_type::element (functor2_type (), j, size_, i, size_);                BOOST_UBLAS_CHECK (type_traits<value_type>::equals (data () [k], value_type (0)) ||                                   type_traits<value_type>::equals (data () [k], t), bad_index ());                // data ().insert (data ().begin () + k, t);                data () [k] = t;            }        }        BOOST_UBLAS_INLINE        void erase (size_type i, size_type j) {            BOOST_UBLAS_CHECK (i < size_, bad_index ());            BOOST_UBLAS_CHECK (j < size_, bad_index ());            if (functor1_type::other (i, j)) {                // size_type k = functor1_type::element (functor2_type (), i, size_, j, size_);                // data ().erase (data ().begin () + k));                data () [functor1_type::element (functor2_type (), i, size_, j, size_)] = value_type (0);            } else {                // data ().erase (data ().begin () + k);                data () [functor1_type::element (functor2_type (), j, size_, i, size_)] = value_type (0);            }        }        BOOST_UBLAS_INLINE        void clear () {            // data ().clear ();            std::fill (data ().begin (), data ().end (), value_type (0));        }        // Iterator types#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR        typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1;        typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2;        typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1;        typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;#else        class const_iterator1;        class iterator1;        class const_iterator2;        class iterator2;#endif#ifdef BOOST_MSVC_STD_ITERATOR        typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1;        typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1;        typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2;        typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;#else        typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;        typedef reverse_iterator_base1<iterator1> reverse_iterator1;        typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;        typedef reverse_iterator_base2<iterator2> reverse_iterator2;#endif        // Element lookup        BOOST_UBLAS_INLINE        const_iterator1 find1 (int /* rank */, size_type i, size_type j) const {            return const_iterator1 (*this, i, j);        }        BOOST_UBLAS_INLINE        iterator1 find1 (int rank, size_type i, size_type j) {            if (rank == 1)                i = functor1_type::restrict1 (i, j);            return iterator1 (*this, i, j);        }        BOOST_UBLAS_INLINE        const_iterator2 find2 (int /* rank */, size_type i, size_type j) const {            return const_iterator2 (*this, i, j);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -