📄 symmetric.hpp
字号:
//// Copyright (c) 2000-2002// Joerg Walter, Mathias Koch//// Permission to use, copy, modify, distribute and sell this software// and its documentation for any purpose is hereby granted without fee,// provided that the above copyright notice appear in all copies and// that both that copyright notice and this permission notice appear// in supporting documentation. The authors make no representations// about the suitability of this software for any purpose.// It is provided "as is" without express or implied warranty.//// The authors gratefully acknowledge the support of// GeNeSys mbH & Co. KG in producing this work.//#ifndef BOOST_UBLAS_SYMMETRIC_H#define BOOST_UBLAS_SYMMETRIC_H#include <boost/numeric/ublas/config.hpp>#include <boost/numeric/ublas/storage.hpp>#include <boost/numeric/ublas/matrix.hpp>// Iterators based on ideas of Jeremy Siek// Symmetric matrices are square. Thanks to Peter Schmitteckert for spotting this.namespace boost { namespace numeric { namespace ublas { template<class M> bool is_symmetric (const M &m) { typedef typename M::size_type size_type; if (m.size1 () != m.size2 ()) return false; size_type size = BOOST_UBLAS_SAME (m.size1 (), m.size2 ()); for (size_type i = 0; i < size; ++ i) { for (size_type j = i; j < size; ++ j) { if (m (i, j) != m (j, i)) return false; } } return true; } // Array based symmetric matrix class template<class T, class F1, class F2, class A> class symmetric_matrix: public matrix_expression<symmetric_matrix<T, F1, F2, A> > { public:#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS BOOST_UBLAS_USING matrix_expression<symmetric_matrix<T, F1, F2, A> >::operator ();#endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; typedef const T &const_reference; typedef T &reference; typedef A array_type; private: typedef T *pointer; typedef F1 functor1_type; typedef F2 functor2_type; typedef symmetric_matrix<T, F1, F2, A> self_type; public:#ifndef BOOST_UBLAS_CT_REFERENCE_BASE_TYPEDEFS typedef const matrix_const_reference<const self_type> const_closure_type;#else typedef const matrix_reference<const self_type> const_closure_type;#endif typedef matrix_reference<self_type> closure_type; typedef vector<T, A> vector_temporary_type; typedef matrix<T, F2, A> matrix_temporary_type; // general sub-matrix typedef packed_tag storage_category; typedef typename F1::packed_category packed_category; typedef typename F2::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE symmetric_matrix (): matrix_expression<self_type> (), size_ (0), data_ (0) {} BOOST_UBLAS_INLINE symmetric_matrix (size_type size): matrix_expression<self_type> (), size_ (BOOST_UBLAS_SAME (size, size)), data_ (functor1_type::packed_size (size, size)) { } BOOST_UBLAS_INLINE symmetric_matrix (size_type size1, size_type size2): matrix_expression<self_type> (), size_ (BOOST_UBLAS_SAME (size1, size2)), data_ (functor1_type::packed_size (size1, size2)) { } BOOST_UBLAS_INLINE symmetric_matrix (size_type size, const array_type &data): matrix_expression<self_type> (), size_ (size), data_ (data) {} BOOST_UBLAS_INLINE symmetric_matrix (const symmetric_matrix &m): matrix_expression<self_type> (), size_ (m.size_), data_ (m.data_) {} template<class AE> BOOST_UBLAS_INLINE symmetric_matrix (const matrix_expression<AE> &ae): matrix_expression<self_type> (), size_ (BOOST_UBLAS_SAME (ae ().size1 (), ae ().size2 ())), data_ (functor1_type::packed_size (size_, size_)) { matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size_; } BOOST_UBLAS_INLINE size_type size2 () const { return size_; } BOOST_UBLAS_INLINE const array_type &data () const { return data_; } BOOST_UBLAS_INLINE array_type &data () { return data_; } // Resizing BOOST_UBLAS_INLINE void resize (size_type size, bool preserve = true) { size_ = size; if (preserve) { self_type temporary (size_, size_); // FIXME use matrix_resize_preserve on conformant compilers // detail::matrix_resize_reserve<functor_type> (*this, temporary, size_, size_); assign_temporary (temporary); } else data ().resize (functor1_type::packed_size (size_, size_)); } BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, bool preserve = true) { resize (BOOST_UBLAS_SAME (size1, size2), preserve); } BOOST_UBLAS_INLINE void resize_packed_preserve (size_type size) { size_ = BOOST_UBLAS_SAME (size, size); data ().resize (functor1_type::packed_size (size_, size_), value_type (0)); } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size_, bad_index ()); BOOST_UBLAS_CHECK (j < size_, bad_index ()); if (functor1_type::other (i, j)) return data () [functor1_type::element (functor2_type (), i, size_, j, size_)]; else return data () [functor1_type::element (functor2_type (), j, size_, i, size_)]; } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size_, bad_index ()); BOOST_UBLAS_CHECK (j < size_, bad_index ()); if (functor1_type::other (i, j)) return data () [functor1_type::element (functor2_type (), i, size_, j, size_)]; else return data () [functor1_type::element (functor2_type (), j, size_, i, size_)]; } // Assignment BOOST_UBLAS_INLINE symmetric_matrix &operator = (const symmetric_matrix &m) { size_ = m.size_; data () = m.data (); return *this; } BOOST_UBLAS_INLINE symmetric_matrix &assign_temporary (symmetric_matrix &m) { swap (m); return *this; } template<class AE> BOOST_UBLAS_INLINE symmetric_matrix &operator = (const matrix_expression<AE> &ae) { // return assign (self_type (ae)); self_type temporary (ae); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE symmetric_matrix &assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE symmetric_matrix& operator += (const matrix_expression<AE> &ae) { // return assign (self_type (*this + ae)); self_type temporary (*this + ae); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE symmetric_matrix &plus_assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_plus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); return *this; } template<class AE> BOOST_UBLAS_INLINE symmetric_matrix& operator -= (const matrix_expression<AE> &ae) { // return assign (self_type (*this - ae)); self_type temporary (*this - ae); return assign_temporary (temporary); } template<class AE> BOOST_UBLAS_INLINE symmetric_matrix &minus_assign (const matrix_expression<AE> &ae) { matrix_assign (scalar_minus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); return *this; } template<class AT> BOOST_UBLAS_INLINE symmetric_matrix& operator *= (const AT &at) { matrix_assign_scalar (scalar_multiplies_assign<reference, AT> (), *this, at); return *this; } template<class AT> BOOST_UBLAS_INLINE symmetric_matrix& operator /= (const AT &at) { matrix_assign_scalar (scalar_divides_assign<reference, AT> (), *this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (symmetric_matrix &m) { if (this != &m) { std::swap (size_, m.size_); data ().swap (m.data ()); } }#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS BOOST_UBLAS_INLINE friend void swap (symmetric_matrix &m1, symmetric_matrix &m2) { m1.swap (m2); }#endif // Element insertion and erasure // These functions should work with std::vector. // Thanks to Kresimir Fresl for spotting this. BOOST_UBLAS_INLINE void insert (size_type i, size_type j, const_reference t) { BOOST_UBLAS_CHECK (i < size_, bad_index ()); BOOST_UBLAS_CHECK (j < size_, bad_index ()); if (functor1_type::other (i, j)) { size_type k = functor1_type::element (functor2_type (), i, size_, j, size_); BOOST_UBLAS_CHECK (type_traits<value_type>::equals (data () [k], value_type (0)) || type_traits<value_type>::equals (data () [k], t), bad_index ()); // data ().insert (data ().begin () + k, t); data () [k] = t; } else { size_type k = functor1_type::element (functor2_type (), j, size_, i, size_); BOOST_UBLAS_CHECK (type_traits<value_type>::equals (data () [k], value_type (0)) || type_traits<value_type>::equals (data () [k], t), bad_index ()); // data ().insert (data ().begin () + k, t); data () [k] = t; } } BOOST_UBLAS_INLINE void erase (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size_, bad_index ()); BOOST_UBLAS_CHECK (j < size_, bad_index ()); if (functor1_type::other (i, j)) { // size_type k = functor1_type::element (functor2_type (), i, size_, j, size_); // data ().erase (data ().begin () + k)); data () [functor1_type::element (functor2_type (), i, size_, j, size_)] = value_type (0); } else { // data ().erase (data ().begin () + k); data () [functor1_type::element (functor2_type (), j, size_, i, size_)] = value_type (0); } } BOOST_UBLAS_INLINE void clear () { // data ().clear (); std::fill (data ().begin (), data ().end (), value_type (0)); } // Iterator types#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1; typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2; typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1; typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;#else class const_iterator1; class iterator1; class const_iterator2; class iterator2;#endif#ifdef BOOST_MSVC_STD_ITERATOR typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1; typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1; typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2; typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;#else typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1; typedef reverse_iterator_base1<iterator1> reverse_iterator1; typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2; typedef reverse_iterator_base2<iterator2> reverse_iterator2;#endif // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int /* rank */, size_type i, size_type j) const { return const_iterator1 (*this, i, j); } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) { if (rank == 1) i = functor1_type::restrict1 (i, j); return iterator1 (*this, i, j); } BOOST_UBLAS_INLINE const_iterator2 find2 (int /* rank */, size_type i, size_type j) const { return const_iterator2 (*this, i, j);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -