📄 matrix_sparse.hpp
字号:
typename self_type::#endif const_iterator1 end () const { const self_type &m = (*this) (); return m.find1 (1, m.size1 (), index2 ()); } BOOST_UBLAS_INLINE#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type::#endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type::#endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); }#endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ()); if (rank_ == 1) { const self_type &m = (*this) (); BOOST_UBLAS_CHECK (functor_type::index1 ((*it_).first, m.size1 (), m.size2 ()) < (*this) ().size1 (), bad_index ()); return functor_type::index1 ((*it_).first, m.size1 (), m.size2 ()); } else { return i_; } } BOOST_UBLAS_INLINE size_type index2 () const { BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ()); if (rank_ == 1) { const self_type &m = (*this) (); BOOST_UBLAS_CHECK (functor_type::index2 ((*it_).first, m.size1 (), m.size2 ()) < (*this) ().size2 (), bad_index ()); return functor_type::index2 ((*it_).first, m.size1 (), m.size2 ()); } else { return j_; } } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference<self_type>::assign (&it ()); rank_ = it.rank_; i_ = it.i_; j_ = it.j_; it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); // BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ()); if (rank_ == 1 || it.rank_ == 1) { return it_ == it.it_; } else { return i_ == it.i_ && j_ == it.j_; } } private: int rank_; size_type i_; size_type j_; const_iterator_type it_; }; BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2_); } class iterator2: public container_reference<sparse_matrix>, public bidirectional_iterator_base<sparse_bidirectional_iterator_tag, iterator2, value_type> { public: typedef sparse_bidirectional_iterator_tag iterator_category;#ifndef BOOST_MSVC_STD_ITERATOR typedef typename sparse_matrix::value_type value_type; typedef typename sparse_matrix::difference_type difference_type; typedef typename sparse_matrix::true_reference reference; typedef typename sparse_matrix::pointer pointer;#endif typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference<self_type> (), rank_ (), i_ (), j_ (), it_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, int rank, size_type i, size_type j, const iterator_type &it): container_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { if (rank_ == 1 && functor_type::fast2 ()) ++ it_; else *this = (*this) ().find2 (rank_, i_, index2 () + 1, 1); return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { if (rank_ == 1 && functor_type::fast2 ()) -- it_; else *this = (*this) ().find2 (rank_, i_, index2 () - 1, -1); return *this; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ()); BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ()); if (rank_ == 1) { return (*it_).second; } else { return (*this) ().at_element (i_, j_); } }#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type::#endif iterator1 begin () const { self_type &m = (*this) (); return m.find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type::#endif iterator1 end () const { self_type &m = (*this) (); return m.find1 (1, m.size1 (), index2 ()); } BOOST_UBLAS_INLINE#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type::#endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type::#endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); }#endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ()); if (rank_ == 1) { const self_type &m = (*this) (); BOOST_UBLAS_CHECK (functor_type::index1 ((*it_).first, m.size1 (), m.size2 ()) < (*this) ().size1 (), bad_index ()); return functor_type::index1 ((*it_).first, m.size1 (), m.size2 ()); } else { return i_; } } BOOST_UBLAS_INLINE size_type index2 () const { BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ()); if (rank_ == 1) { const self_type &m = (*this) (); BOOST_UBLAS_CHECK (functor_type::index2 ((*it_).first, m.size1 (), m.size2 ()) < (*this) ().size2 (), bad_index ()); return functor_type::index2 ((*it_).first, m.size1 (), m.size2 ()); } else { return j_; } } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference<self_type>::assign (&it ()); rank_ = it.rank_; i_ = it.i_; j_ = it.j_; it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); // BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ()); if (rank_ == 1 || it.rank_ == 1) { return it_ == it.it_; } else { return i_ == it.i_ && j_ == it.j_; } } private: int rank_; size_type i_; size_type j_; iterator_type it_; friend class const_iterator2; }; BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2_); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } private: size_type size1_; size_type size2_; array_type data_; static const value_type zero_; }; template<class T, class F, class A> const typename sparse_matrix<T, F, A>::value_type sparse_matrix<T, F, A>::zero_#ifdef BOOST_UBLAS_STATIC_OLD_INIT = BOOST_UBLAS_TYPENAME sparse_matrix<T, F, A>::value_type#endif (0); // Array based sparse matrix class template<class T, class F, class A> class sparse_vector_of_sparse_vector: public matrix_expression<sparse_vector_of_sparse_vector<T, F, A> > { public:#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS BOOST_UBLAS_USING matrix_expression<sparse_vector_of_sparse_vector<T, F, A> >::operator ();#endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; typedef const T &const_reference;#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE typedef typename detail::map_traits<typename A::data_value_type, T>::reference reference;#else typedef sparse_matrix_element<sparse_vector_of_sparse_vector<T, F, A> > reference;#endif private: typedef T &true_reference; typedef T *pointer; typedef A array_type; typedef const A const_array_type; typedef F functor_type; typedef sparse_vector_of_sparse_vector<T, F, A> self_type; public:#ifndef BOOST_UBLAS_CT_REFERENCE_BASE_TYPEDEFS typedef const matrix_const_reference<const self_type> const_closure_type;#else typedef const matrix_reference<const self_type> const_closure_type;#endif typedef matrix_reference<self_type> closure_type; typedef sparse_vector<T, typename A::value_type> vector_temporary_type; typedef self_type matrix_temporary_type; typedef typename A::value_type::second_type vector_data_value_type; typedef sparse_tag storage_category; typedef typename F::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE sparse_vector_of_sparse_vector (): matrix_expression<self_type> (), size1_ (0), size2_ (0), non_zeros_ (0), data_ () {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -