⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix_sparse.hpp

📁 CGAL is a collaborative effort of several sites in Europe and Israel. The goal is to make the most i
💻 HPP
📖 第 1 页 / 共 5 页
字号:
        BOOST_UBLAS_INLINE        void reserve (size_type non_zeros, bool preserve = true) {            detail::map_reserve (data (), restrict_nz (non_zeros));        }        // Proxy support#ifdef BOOST_UBLAS_STRICT_MATRIX_SPARSE        BOOST_UBLAS_INLINE        pointer find_element (size_type i, size_type j) {            iterator_type it (data ().find (functor_type::element (i, size1_, j, size2_)));            if (it == data ().end () || (*it).first != functor_type::element (i, size1_, j, size2_))                return 0;            return &(*it).second;        }#endif        // Element access        BOOST_UBLAS_INLINE        const_reference at_element (size_type i, size_type j) const {            const_iterator_type it (data ().find (functor_type::element (i, size1_, j, size2_)));            if (it == data ().end () || (*it).first != functor_type::element (i, size1_, j, size2_))                return zero_;            return (*it).second;        }        BOOST_UBLAS_INLINE        true_reference at_element (size_type i, size_type j) {            return data () [functor_type::element (i, size1_, j, size2_)];        }        BOOST_UBLAS_INLINE        const_reference operator () (size_type i, size_type j) const {            return at_element (i, j);        }        BOOST_UBLAS_INLINE        reference operator () (size_type i, size_type j) {#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE            return at_element (i, j);#else            return reference (*this, i, j);#endif        }        // Assignment        BOOST_UBLAS_INLINE        sparse_matrix &operator = (const sparse_matrix &m) {            if (this != &m) {                size1_ = m.size1_;                size2_ = m.size2_;                data () = m.data ();            }            return *this;        }        BOOST_UBLAS_INLINE        sparse_matrix &assign_temporary (sparse_matrix &m) {            swap (m);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        sparse_matrix &operator = (const matrix_expression<AE> &ae) {            self_type temporary (ae, detail::map_capacity (data ()));            return assign_temporary (temporary);        }        template<class AE>        BOOST_UBLAS_INLINE        sparse_matrix &assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_assign<true_reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        sparse_matrix& operator += (const matrix_expression<AE> &ae) {            self_type temporary (*this + ae, detail::map_capacity (data ()));            return assign_temporary (temporary);        }        template<class AE>        BOOST_UBLAS_INLINE        sparse_matrix &plus_assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_plus_assign<true_reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);            return *this;        }        template<class AE>        BOOST_UBLAS_INLINE        sparse_matrix& operator -= (const matrix_expression<AE> &ae) {            self_type temporary (*this - ae, detail::map_capacity (data ()));            return assign_temporary (temporary);        }        template<class AE>        BOOST_UBLAS_INLINE        sparse_matrix &minus_assign (const matrix_expression<AE> &ae) {            matrix_assign (scalar_minus_assign<true_reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);            return *this;        }        template<class AT>        BOOST_UBLAS_INLINE        sparse_matrix& operator *= (const AT &at) {            matrix_assign_scalar (scalar_multiplies_assign<true_reference, AT> (), *this, at);            return *this;        }        template<class AT>        BOOST_UBLAS_INLINE        sparse_matrix& operator /= (const AT &at) {            matrix_assign_scalar (scalar_divides_assign<true_reference, AT> (), *this, at);            return *this;        }        // Swapping        BOOST_UBLAS_INLINE        void swap (sparse_matrix &m) {            if (this != &m) {                std::swap (size1_, m.size1_);                std::swap (size2_, m.size2_);                data ().swap (m.data ());            }        }#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS        BOOST_UBLAS_INLINE        friend void swap (sparse_matrix &m1, sparse_matrix &m2) {            m1.swap (m2);        }#endif        // Element insertion and erasure        BOOST_UBLAS_INLINE        void insert (size_type i, size_type j, const_reference t) {            BOOST_UBLAS_CHECK (data ().find (functor_type::element (i, size1_, j, size2_)) == data ().end (), bad_index ());            data ().insert (data ().end (), BOOST_UBLAS_TYPENAME array_type::value_type (functor_type::element (i, size1_, j, size2_), t));        }        BOOST_UBLAS_INLINE        void erase (size_type i, size_type j) {            // FIXME: shouldn't we use const_iterator_type here?            iterator_type it = data ().find (functor_type::element (i, size1_, j, size2_));            if (it == data ().end ())                return;            data ().erase (it);        }        BOOST_UBLAS_INLINE        void clear () {            data ().clear ();        }        // Iterator types    private:        // Use storage iterator        typedef typename A::const_iterator const_iterator_type;        typedef typename A::iterator iterator_type;    public:        class const_iterator1;        class iterator1;        class const_iterator2;        class iterator2;#ifdef BOOST_MSVC_STD_ITERATOR        typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1;        typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1;        typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2;        typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;#else        typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;        typedef reverse_iterator_base1<iterator1> reverse_iterator1;        typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;        typedef reverse_iterator_base2<iterator2> reverse_iterator2;#endif        // Element lookup        // This function seems to be big. So we do not let the compiler inline it.        // BOOST_UBLAS_INLINE        const_iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) const {            const_iterator_type it (data ().lower_bound (functor_type::address (i, size1_, j, size2_)));            const_iterator_type it_end (data ().end ());            size_type index1 = size_type (-1);            size_type index2 = size_type (-1);            while (rank == 1 && it != it_end) {                index1 = functor_type::index1 ((*it).first, size1_, size2_);                index2 = functor_type::index2 ((*it).first, size1_, size2_);                if (direction > 0) {                    if ((index1 >= i && index2 == j) || (i >= size1_))                        break;                    ++ i;                } else /* if (direction < 0) */ {                    if ((index1 <= i && index2 == j) || (i == 0))                        break;                    -- i;                }                it = data ().lower_bound (functor_type::address (i, size1_, j, size2_));            }            if (rank == 1 && index2 != j) {                if (direction > 0)                    i = size1_;                else /* if (direction < 0) */                    i = 0;                rank = 0;            }            return const_iterator1 (*this, rank, i, j, it);        }        // This function seems to be big. So we do not let the compiler inline it.        // BOOST_UBLAS_INLINE        iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) {            iterator_type it (data ().lower_bound (functor_type::address (i, size1_, j, size2_)));            iterator_type it_end (data ().end ());            size_type index1 = size_type (-1);            size_type index2 = size_type (-1);            while (rank == 1 && it != it_end) {                index1 = functor_type::index1 ((*it).first, size1_, size2_);                index2 = functor_type::index2 ((*it).first, size1_, size2_);                if (direction > 0) {                    if ((index1 >= i && index2 == j) || (i >= size1_))                        break;                    ++ i;                } else /* if (direction < 0) */ {                    if ((index1 <= i && index2 == j) || (i == 0))                        break;                    -- i;                }                it = data ().lower_bound (functor_type::address (i, size1_, j, size2_));            }            if (rank == 1 && index2 != j) {                if (direction > 0)                    i = size1_;                else /* if (direction < 0) */                    i = 0;                rank = 0;            }            return iterator1 (*this, rank, i, j, it);        }        // This function seems to be big. So we do not let the compiler inline it.        // BOOST_UBLAS_INLINE        const_iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) const {            const_iterator_type it (data ().lower_bound (functor_type::address (i, size1_, j, size2_)));            const_iterator_type it_end (data ().end ());            size_type index1 = size_type (-1);            size_type index2 = size_type (-1);            while (rank == 1 && it != it_end) {                index1 = functor_type::index1 ((*it).first, size1_, size2_);                index2 = functor_type::index2 ((*it).first, size1_, size2_);                if (direction > 0) {                    if ((index2 >= j && index1 == i) || (j >= size2_))                        break;                    ++ j;                } else /* if (direction < 0) */ {                    if ((index2 <= j && index1 == i) || (j == 0))                        break;                    -- j;                }                it = data ().lower_bound (functor_type::address (i, size1_, j, size2_));            }            if (rank == 1 && index1 != i) {                if (direction > 0)                    j = size2_;                else /* if (direction < 0) */                    j = 0;                rank = 0;            }            return const_iterator2 (*this, rank, i, j, it);        }        // This function seems to be big. So we do not let the compiler inline it.        // BOOST_UBLAS_INLINE        iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) {            iterator_type it (data ().lower_bound (functor_type::address (i, size1_, j, size2_)));            iterator_type it_end (data ().end ());            size_type index1 = size_type (-1);            size_type index2 = size_type (-1);            while (rank == 1 && it != it_end) {                index1 = functor_type::index1 ((*it).first, size1_, size2_);                index2 = functor_type::index2 ((*it).first, size1_, size2_);                if (direction > 0) {                    if ((index2 >= j && index1 == i) || (j >= size2_))                        break;                    ++ j;                } else /* if (direction < 0) */ {                    if ((index2 <= j && index1 == i) || (j == 0))                        break;                    -- j;                }                it = data ().lower_bound (functor_type::address (i, size1_, j, size2_));            }            if (rank == 1 && index1 != i) {                if (direction > 0)                    j = size2_;                else /* if (direction < 0) */                    j = 0;                rank = 0;            }            return iterator2 (*this, rank, i, j, it);        }        class const_iterator1:            public container_const_reference<sparse_matrix>,            public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,                                               const_iterator1, value_type> {        public:            typedef sparse_bidirectional_iterator_tag iterator_category;#ifdef BOOST_MSVC_STD_ITERATOR            typedef const_reference reference;#else            typedef typename sparse_matrix::value_type value_type;            typedef typename sparse_matrix::difference_type difference_type;            typedef typename sparse_matrix::const_reference reference;            typedef const typename sparse_matrix::pointer pointer;#endif            typedef const_iterator2 dual_iterator_type;            typedef const_reverse_iterator2 dual_reverse_iterator_type;            // Construction and destruction            BOOST_UBLAS_INLINE            const_iterator1 ():                container_const_reference<self_type> (), rank_ (), i_ (), j_ (), it_ () {}            BOOST_UBLAS_INLINE            const_iterator1 (const self_type &m, int rank, size_type i, size_type j, const const_iterator_type &it):                container_const_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), it_ (it) {}            BOOST_UBLAS_INLINE            const_iterator1 (const iterator1 &it):                container_const_reference<self_type> (it ()), rank_ (it.rank_), i_ (it.i_), j_ (it.j_), it_ (it.it_) {}            // Arithmetic            BOOST_UBLAS_INLINE            const_iterator1 &operator ++ () {                if (rank_ == 1 && functor_type::fast1 ())                    ++ it_;                else                    *this = (*this) ().find1 (rank_, index1 () + 1, j_, 1);                return *this;            }            BOOST_UBLAS_INLINE            const_iterator1 &operator -- () {                if (rank_ == 1 && functor_type::fast1 ())                    -- it_;                else                    *this = (*this) ().find1 (rank_, index1 () - 1, j_, -1);                return *this;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -