⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 operation.hpp

📁 CGAL is a collaborative effort of several sites in Europe and Israel. The goal is to make the most i
💻 HPP
📖 第 1 页 / 共 3 页
字号:
            for (size_type i = 0; i < size1; ++ i)                column (m, j).plus_assign (e2 () (i, j) * column (e1 (), i));#if BOOST_UBLAS_TYPE_CHECK        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());#endif        return m;    }    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M &    axpy_prod (const matrix_expression<E1> &e1,               const matrix_expression<E2> &e2,               M &m, F,               sparse_proxy_tag, column_major_tag) {        typedef M matrix_type;        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename M::size_type size_type;        typedef typename M::value_type value_type;        typedef F functor_type;#if BOOST_UBLAS_TYPE_CHECK        matrix<value_type, column_major> cm (m);        typedef typename type_traits<value_type>::real_type real_type;        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));        indexing_matrix_assign (scalar_plus_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());#endif        typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());        typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());        while (it2 != it2_end) {#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION            typename expression2_type::const_iterator1 it1 (it2.begin ());            typename expression2_type::const_iterator1 it1_end (it2.end ());#else            typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));            typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));#endif            while (it1 != it1_end) {                // column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));                matrix_column<expression1_type> mc (e1 (), it1.index1 ());                typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());                typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());                while (itc != itc_end) {                    if (functor_type ().other (itc.index (), it2.index2 ()))                        m (itc.index (), it2.index2 ()) += *it1 * *itc;                    ++ itc;                }                ++ it1;            }            ++ it2;        }#if BOOST_UBLAS_TYPE_CHECK        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());#endif        return m;    }    // Dispatcher    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M &    axpy_prod (const matrix_expression<E1> &e1,               const matrix_expression<E2> &e2,               M &m, F, bool init = true) {        typedef typename M::value_type value_type;        typedef typename M::storage_category storage_category;        typedef typename M::orientation_category orientation_category;        typedef F functor_type;        if (init)            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));        return axpy_prod (e1, e2, m, functor_type (), storage_category (), orientation_category ());    }    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M    axpy_prod (const matrix_expression<E1> &e1,               const matrix_expression<E2> &e2,               F) {        typedef M matrix_type;        typedef F functor_type;        matrix_type m (e1 ().size1 (), e2 ().size2 ());        // FIXME: needed for c_matrix?!        // return axpy_prod (e1, e2, m, functor_type (), false);        return axpy_prod (e1, e2, m, functor_type (), true);    }  /** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an          optimized fashion.          \param e1 the matrix expression \c A          \param e2 the matrix expression \c X          \param m  the result matrix \c M          \param init a boolean parameter          <tt>axpy_prod(A, X, M, init)</tt> implements the well known          axpy-product.  Setting \a init to \c true is equivalent to call          <tt>M.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init          defaults to \c true, but this may change in the future.          Up to now there are no specialisations.                    \ingroup blas3          \internal                    template parameters:          \param M type of the result matrix \c M          \param E1 type of a matrix expression \c A          \param E2 type of a matrix expression \c X  */    template<class M, class E1, class E2>    BOOST_UBLAS_INLINE    M &    axpy_prod (const matrix_expression<E1> &e1,               const matrix_expression<E2> &e2,               M &m, bool init = true) {        typedef typename M::value_type value_type;        typedef typename M::storage_category storage_category;        typedef typename M::orientation_category orientation_category;        if (init)            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));        return axpy_prod (e1, e2, m, full (), storage_category (), orientation_category ());    }    template<class M, class E1, class E2>    BOOST_UBLAS_INLINE    M    axpy_prod (const matrix_expression<E1> &e1,               const matrix_expression<E2> &e2) {        typedef M matrix_type;        matrix_type m (e1 ().size1 (), e2 ().size2 ());        // FIXME: needed for c_matrix?!        // return axpy_prod (e1, e2, m, full (), false);        return axpy_prod (e1, e2, m, full (), true);    }    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M &    opb_prod (const matrix_expression<E1> &e1,              const matrix_expression<E2> &e2,              M &m, F,              dense_proxy_tag, row_major_tag) {        typedef M matrix_type;        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename M::size_type size_type;        typedef typename M::value_type value_type;#if BOOST_UBLAS_TYPE_CHECK        matrix<value_type, row_major> cm (m);        typedef typename type_traits<value_type>::real_type real_type;        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));        indexing_matrix_assign (scalar_plus_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());#endif        size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));        for (size_type k = 0; k < size; ++ k) {            vector<value_type> ce1 (column (e1 (), k));            vector<value_type> re2 (row (e2 (), k));            m.plus_assign (outer_prod (ce1, re2));        }#if BOOST_UBLAS_TYPE_CHECK        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());#endif        return m;    }    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M &    opb_prod (const matrix_expression<E1> &e1,              const matrix_expression<E2> &e2,              M &m, F,              dense_proxy_tag, column_major_tag) {        typedef M matrix_type;        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename M::size_type size_type;        typedef typename M::value_type value_type;#if BOOST_UBLAS_TYPE_CHECK        matrix<value_type, column_major> cm (m);        typedef typename type_traits<value_type>::real_type real_type;        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));        indexing_matrix_assign (scalar_plus_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());#endif        size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));        for (size_type k = 0; k < size; ++ k) {            vector<value_type> ce1 (column (e1 (), k));            vector<value_type> re2 (row (e2 (), k));            m.plus_assign (outer_prod (ce1, re2));        }#if BOOST_UBLAS_TYPE_CHECK        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());#endif        return m;    }    // Dispatcher    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M &    opb_prod (const matrix_expression<E1> &e1,              const matrix_expression<E2> &e2,              M &m, F, bool init = true) {        typedef typename M::value_type value_type;        typedef typename M::storage_category storage_category;        typedef typename M::orientation_category orientation_category;        typedef F functor_type;        if (init)            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));        return opb_prod (e1, e2, m, functor_type (), storage_category (), orientation_category ());    }    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M    opb_prod (const matrix_expression<E1> &e1,              const matrix_expression<E2> &e2,              F) {        typedef M matrix_type;        typedef F functor_type;        matrix_type m (e1 ().size1 (), e2 ().size2 ());        // FIXME: needed for c_matrix?!        // return opb_prod (e1, e2, m, functor_type (), false);        return opb_prod (e1, e2, m, functor_type (), true);    }  /** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an          optimized fashion.          \param e1 the matrix expression \c A          \param e2 the matrix expression \c X          \param m  the result matrix \c M          \param init a boolean parameter          <tt>opb_prod(A, X, M, init)</tt> implements the well known          axpy-product. Setting \a init to \c true is equivalent to call          <tt>M.clear()</tt> before <tt>opb_prod</tt>. Currently \a init          defaults to \c true, but this may change in the future.          This function may give a speedup if \c A has less columns than          rows, because the product is computed as a sum of outer          products.                    \ingroup blas3          \internal                    template parameters:          \param M type of the result matrix \c M          \param E1 type of a matrix expression \c A          \param E2 type of a matrix expression \c X  */    template<class M, class E1, class E2>    BOOST_UBLAS_INLINE    M &    opb_prod (const matrix_expression<E1> &e1,              const matrix_expression<E2> &e2,              M &m, bool init = true) {        typedef typename M::value_type value_type;        typedef typename M::storage_category storage_category;        typedef typename M::orientation_category orientation_category;        if (init)            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));        return opb_prod (e1, e2, m, full (), storage_category (), orientation_category ());    }    template<class M, class E1, class E2>    BOOST_UBLAS_INLINE    M    opb_prod (const matrix_expression<E1> &e1,              const matrix_expression<E2> &e2) {        typedef M matrix_type;        matrix_type m (e1 ().size1 (), e2 ().size2 ());        // FIXME: needed for c_matrix?!        // return opb_prod (e1, e2, m, full (), false);        return opb_prod (e1, e2, m, full (), true);    }}}}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -